Single Pixel Imaging Based on Generative Adversarial Network Optimized With Multiple Prior Information

被引:11
作者
Sun, Shida [1 ]
Yan, Qiurong [1 ]
Zheng, Yongjian [1 ]
Zhen Wei [1 ]
Lin, Jian [1 ]
Cai, Yilin [1 ]
机构
[1] Nanchang Univ, Sch Informat Engn, Nanchang 330031, Jiangxi, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2022年 / 14卷 / 04期
基金
中国国家自然科学基金;
关键词
Image reconstruction; Generative adversarial networks; Imaging; Generators; Training; Image coding; Loss measurement; Compressed sensing (CS); single pixel imaging (SPI) system; photon counting; generative adversarial networks (GAN); deep learning; multiple prior information; SIGNAL RECOVERY; RECONSTRUCTION;
D O I
10.1109/JPHOT.2022.3184947
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reconstructing high-quality images at low measurement rate is one of the research objectives for single-pixel imaging (SPI). Deep learning based compressed reconstruction methods have been shown to avoid the huge iterative computation of traditional methods, while achieving better reconstruction results. Benefiting from improved modeling capabilities under the constant game of generation and identification, Generative Adversarial Networks (GANs) has achieved great success in image generation and reconstruction. In this paper, we proposed a GAN-based compression reconstruction network, MPIGAN. In order to obtain multiple prior information from the dataset and thus improving the accuracy of the model, multiple Autoencoders are trained as regularization terms to be added to the loss function of the generative network, and then adversarial training is performed with a multi-label classification network. Experimental results show that our scheme can significantly improve reconstruction quality at a very low measurement rate, and reconstruction results are better than the existing network.
引用
收藏
页数:10
相关论文
共 36 条
[1]  
Arjom S, 2017, Arxiv, DOI arXiv:1703.09964
[2]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[3]  
Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
[4]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223
[5]  
Chen X, 2016, ADV NEUR IN, V29
[6]  
Courbariaux M, 2016, Arxiv, DOI arXiv:1602.02830
[7]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[8]   Single-pixel imaging via compressive sampling [J].
Duarte, Marco F. ;
Davenport, Mark A. ;
Takhar, Dharmpal ;
Laska, Jason N. ;
Sun, Ting ;
Kelly, Kevin F. ;
Baraniuk, Richard G. .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (02) :83-91
[9]   Differential Ghost Imaging [J].
Ferri, F. ;
Magatti, D. ;
Lugiato, L. A. ;
Gatti, A. .
PHYSICAL REVIEW LETTERS, 2010, 104 (25)
[10]   Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems [J].
Figueiredo, Mario A. T. ;
Nowak, Robert D. ;
Wright, Stephen J. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2007, 1 (04) :586-597