Entanglement of bosonic modes through an engineered exchange interaction

被引:112
作者
Gao, Yvonne Y. [1 ,2 ,3 ]
Lester, Brian J. [1 ,2 ,3 ]
Chou, Kevin S. [1 ,2 ,3 ]
Frunzio, Luigi [1 ,2 ,3 ]
Devoret, Michel H. [1 ,2 ,3 ]
Jiang, Liang [1 ,2 ,3 ]
Girvin, S. M. [1 ,2 ,3 ]
Schoelkopf, Robert J. [1 ,2 ,3 ]
机构
[1] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[2] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
[3] Yale Univ, Yale Quantum Inst, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
NEUTRAL ATOMS; QUANTUM; IMPLEMENTATION; GATE;
D O I
10.1038/s41586-019-0970-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum computation presents a powerful new paradigm for information processing. A robust universal quantum computer can be realized with any well controlled quantum system, but a successful platform will ultimately require the combination of highly coherent, error-correctable quantum elements with at least one entangling operation between them(1,2). Quantum information stored in a continuous-variable system-for example, a harmonic oscillator-can take advantage of hardware-efficient quantum error correction protocols that encode information in the large available Hilbert space of each element(3-5). However, such encoded states typically have no controllable direct couplings, making deterministic entangling operations between them particularly challenging. Here we develop an efficient implementation of the exponential-SWAP operation(6) and present its experimental realization between bosonic qubits stored in two superconducting microwave cavities. This engineered operation is analogous to the exchange interaction between discrete spin systems, but acts within any encoded subspace of the continuous-variable modes. Based on a control rotation, the operation produces a coherent superposition of identity and SWAP operations between arbitrary states of two harmonic oscillator modes and can be used to enact a deterministic entangling gate within quantum error correction codes. These results provide a valuable building block for universal quantum computation using bosonic modes.
引用
收藏
页码:509 / +
页数:12
相关论文
共 44 条
[1]   Performance and structure of single-mode bosonic codes [J].
Albert, Victor V. ;
Noh, Kyungjoo ;
Duivenvoorden, Kasper ;
Young, Dylan J. ;
Brierley, R. T. ;
Reinhold, Philip ;
Vuillot, Christophe ;
Li, Linshu ;
Shen, Chao ;
Girvin, S. M. ;
Terhal, Barbara M. ;
Jiang, Liang .
PHYSICAL REVIEW A, 2018, 97 (03)
[2]   Controlled exchange interaction between pairs of neutral atoms in an optical lattice [J].
Anderlini, Marco ;
Lee, Patricia J. ;
Brown, Benjamin L. ;
Sebby-Strabley, Jennifer ;
Phillips, William D. ;
Porto, J. V. .
NATURE, 2007, 448 (7152) :452-456
[3]   An architecture for integrating planar and 3D cQED devices [J].
Axline, C. ;
Reagor, M. ;
Heeres, R. ;
Reinhold, P. ;
Wang, C. ;
Shain, K. ;
Pfaff, W. ;
Chu, Y. ;
Frunzio, L. ;
Schoelkopf, R. J. .
APPLIED PHYSICS LETTERS, 2016, 109 (04)
[4]   Generating Multimode Entangled Microwaves with a Superconducting Parametric Cavity [J].
Chang, C. W. Sandbo ;
Simoen, M. ;
Aumentado, Jose ;
Sabin, Carlos ;
Forn-Diaz, P. ;
Vadiraj, A. M. ;
Quijandria, Fernando ;
Johansson, G. ;
Fuentes, I ;
Wilson, C. M. .
PHYSICAL REVIEW APPLIED, 2018, 10 (04)
[5]   Deterministic teleportation of a quantum gate between two logical qubits [J].
Chou, Kevin S. ;
Blumoff, Jacob Z. ;
Wang, Christopher S. ;
Reinhold, Philip C. ;
Axline, Christopher J. ;
Gao, Yvonne Y. ;
Frunzio, L. ;
Devoret, M. H. ;
Jiang, Liang ;
Schoelkopf, R. J. .
NATURE, 2018, 561 (7723) :368-+
[6]   Universal Quantum Gate Set Approaching Fault-Tolerant Thresholds with Superconducting Qubits [J].
Chow, Jerry M. ;
Gambetta, Jay M. ;
Corcoles, A. D. ;
Merkel, Seth T. ;
Smolin, John A. ;
Rigetti, Chad ;
Poletto, S. ;
Keefe, George A. ;
Rothwell, Mary B. ;
Rozen, J. R. ;
Ketchen, Mark B. ;
Steffen, M. .
PHYSICAL REVIEW LETTERS, 2012, 109 (06)
[7]  
Chuang IL, 1997, J MOD OPTIC, V44, P2455, DOI 10.1080/095003497152609
[8]   Bosonic quantum codes for amplitude damping [J].
Chuang, IL ;
Leung, DW ;
Yamamoto, Y .
PHYSICAL REVIEW A, 1997, 56 (02) :1114-1125
[9]  
DiVincenzo DP, 2000, FORTSCHR PHYS, V48, P771, DOI 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO
[10]  
2-E