Asymptotically balanced schemes for non-homogeneous hyperbolic systems - application to the Shallow Water equations

被引:17
作者
Rebollo, TC
Delgado, AD
Nieto, EDF
机构
[1] Univ Sevilla, Dpto Ecuaciones Diferenciales & Analisis Numer, Seville 41012, Spain
[2] Univ Sevilla, Dpto Matemat Aplicada I, Seville 41012, Spain
关键词
D O I
10.1016/j.crma.2003.11.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we introduce a class of balanced numerical schemes, up to second order, for the solution of general non-homogeneous hyperbolic systems of conservation laws. We give a general technique to build such schemes. We also prove that they balance up to second order a large class of steady solutions in the whole domain but some subset whose measure tends to zero as the grid size decreases to zero. We finally present an application to Shallow Water equations that exhibit the good performances of some of the schemes introduced. (C) 2003 Academie des sciences. Published by Elsevier SAS. All rights reserved.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 8 条
  • [1] UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH SOURCE TERMS
    BERMUDEZ, A
    VAZQUEZ, E
    [J]. COMPUTERS & FLUIDS, 1994, 23 (08) : 1049 - 1071
  • [2] CHACON T, 2003, INT J NUMER METH ENG, V43, P23
  • [3] CHACON T, 2003, COMPUT METHODS APPL, V192, P203
  • [4] FERNANDEZNIETO ED, 2003, THESIS U SEVILLA
  • [5] A well-balanced scheme for the numerical processing of source terms in hyperbolic equations
    Greenberg, JM
    Leroux, AY
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) : 1 - 16
  • [6] A steady-state capturing method for hyperbolic systems with geometrical source terms
    Jin, S
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (04): : 631 - 645
  • [7] PERTHAME B, 2003, P HYP 2002
  • [8] The surface gradient method for the treatment of source terms in the shallow-water equations
    Zhou, JG
    Causon, DM
    Mingham, CG
    Ingram, DM
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 168 (01) : 1 - 25