An Efficient Self-Powered Piezoelectric Energy Harvesting CMOS Interface Circuit Based on Synchronous Charge Extraction Technique

被引:57
|
作者
Shi, Ge [1 ,2 ]
Xia, Yinshui [3 ]
Wang, Xiudeng [3 ]
Qian, Libo [3 ]
Ye, Yidie [3 ]
Li, Qing [2 ]
机构
[1] Ningbo Univ, Ningbo 315211, Zhejiang, Peoples R China
[2] China Jiliang Univ, Coll Mech & Elect Engn, Hangzhou 310018, Zhejiang, Peoples R China
[3] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy harvesting; piezoelectric transducer; SECE; self-powered; low phase lag; integrated circuit; RECTIFIER; MPPT;
D O I
10.1109/TCSI.2017.2731795
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An efficient self-powered synchronous electric charge extraction CMOS interface circuit dedicated to piezoelectric harvesters is proposed in this paper. Self-powered peak detection (PKD) and switch circuits are used to reduce quiescent current so that the backup or pre-charged power can be saved. A new low phase lag (LPL) PKD circuit is designed to improve the synchronous extraction efficiency, which only requires one detection capacitor to perform positive and negative PKD. The circuit can be set at general mode (G-mode) or LPL mode (LPL-mode). Under LPL-mode, the phase lag can be reduced typically by 50%, the synchronous extraction efficiency can obtained up to 94%, while the output power can reach 659 mu W when the piezoelectric transducer original opencircuit voltage V-oc,V-org = 5 V, which is 3.56 times of that of full-bridge rectifier standard energy harvesting circuit at the maximum power point. The minimum harvesting startup voltage is 1.7 V and is independent of the energy storage capacitor voltage V-DC. The harvesting efficiency can still reach 71.3% at V-oc,V-org = 5 V. The size of the active area is 0.5 mm(2) in a 0.18-mu m CMOS technology. Circuit may be invoked as a functional block for energy autonomous wireless sensor network node of the Internet of Things.
引用
收藏
页码:804 / 817
页数:14
相关论文
共 50 条
  • [21] A Self-Powered Piezoelectric Energy Harvesting Interface with Wide Input Range in 65 nm CMOS Process
    Liu, Lianxi
    Pang, Yanbo
    Yuan, Wenzhi
    Mu, Junchao
    IETE JOURNAL OF RESEARCH, 2018, 64 (06) : 753 - 763
  • [22] Improved Design and Analysis of Self-Powered Synchronized Switch Interface Circuit for Piezoelectric Energy Harvesting Systems
    Liang, Junrui
    Liao, Wei-Hsin
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2012, 59 (04) : 1950 - 1960
  • [23] A 0.25-μm HV-CMOS Synchronous Inversion and Charge Extraction Interface Circuit With a Single Inductor for Piezoelectric Energy Harvesting
    Chen, Chi-Wei
    Pranoto, Weining Zeng
    Chen, Hsin-Shu
    Wu, Wen-Jong
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2023, 38 (12) : 15707 - 15718
  • [24] An optimized self-powered P-SSHI circuit for piezoelectric energy harvesting
    Zouari, Manel
    Naifar, Slim
    Gotz, Martin
    Derbel, Nabil
    Kanoun, Olfa
    2017 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2017, : 594 - 599
  • [25] Analysis and Simulation of Synchronous Electric Charge Partial Extraction Technique for Efficient Piezoelectric Energy Harvesting
    Xia, Huakang
    Xia, Yinshui
    Ye, Yidie
    Qian, Libo
    Shi, Ge
    Chen, Renwen
    IEEE SENSORS JOURNAL, 2018, 18 (15) : 6235 - 6244
  • [26] A mechanical solution of self-powered SSHI interface for piezoelectric energy harvesting systems
    Liu, Haili
    Ge, Cong
    Liang, Junrui
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2015, 2015, 9431
  • [27] A self-powered extensible P-SSHI array interface circuit with thermoelectric energy assistance for piezoelectric energy harvesting
    Wang, Yike
    Qi, Yuyao
    Wang, Xiudeng
    Xia, Yinshui
    MICROELECTRONICS JOURNAL, 2023, 140
  • [28] Extensible piezoelectric energy harvesting circuit based on synchronous electric charge extraction with single inductor
    Li, Yi
    Wang, Xiudeng
    Xia, Yinshui
    2019 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC), 2019,
  • [29] A self-powered piezoelectric energy harvesting interface circuit with efficiency-enhanced P-SSHI rectifier
    Liu, Lianxi
    Pang, Yanbo
    Yuan, Wenzhi
    Zhu, Zhangming
    Yang, Yintang
    JOURNAL OF SEMICONDUCTORS, 2018, 39 (04)
  • [30] A self-powered piezoelectric energy harvesting interface circuit with efficiency-enhanced P-SSHI rectifier
    Lianxi Liu
    Yanbo Pang
    Wenzhi Yuan
    Zhangming Zhu
    Yintang Yang
    Journal of Semiconductors, 2018, (04) : 59 - 69