Galerkin and weighted Galerkin methods for a forward-backward heat equation

被引:14
作者
Lu, H
机构
[1] Department of Mathematics, University of Nijmegen, 6525 ED Nijmegen, Toernooiveld
关键词
D O I
10.1007/s002110050242
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Galerkin and weighted Galerkin methods are proposed for the numerical solution of parabolic partial differential equations where the diffusion coefficient takes different signs. The approach is based on a simultaneous discretization of space and time variables by using continuous finite element methods. Under some simple assumptions, error estimates and some numerical results for both Galerkin and weighted Galerkin methods are presented. Comparisons with the previous methods show that new methods not only can be used to solve a wider class of equations but also require less regularity for the solution and need fewer computations.
引用
收藏
页码:339 / 356
页数:18
相关论文
共 16 条
[1]  
AZIZ AK, 1991, MATH COMPUT, V56, P35, DOI 10.1090/S0025-5718-1991-1052085-2
[2]  
Baouendi M. S., 1968, J FUNCT ANAL, V2, P352
[3]   VARIATIONAL ITERATIVE METHODS FOR NONSYMMETRIC SYSTEMS OF LINEAR-EQUATIONS [J].
EISENSTAT, SC ;
ELMAN, HC ;
SCHULTZ, MH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (02) :345-357
[4]   NUMERICAL ANALYSIS OF AN ELLIPTIC-PARABOLIC PARTIAL DIFFERENTIAL EQUATION [J].
FRANKLIN, JN ;
RODEMICH, ER .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1968, 5 (04) :680-&
[5]   SYMMETRIC POSITIVE LINEAR DIFFERENTIAL EQUATIONS [J].
FRIEDRICHS, KO .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1958, 11 (03) :333-418
[6]  
GEVREY M, 1914, J MATH PURE APPL, V6, P105
[7]  
Gevrey M., 1913, J MATH PURE APPL, V6, P305
[8]  
LaRosa T., 1986, THESIS U MARYLAND
[9]  
Lions J. L., 1969, QUELQUES METHODES RE
[10]  
LU H, 1995, THESIS U NIJMEGEN NE