Connectedness of the sets of weak efficient solutions for generalized vector equilibrium problems

被引:11
作者
Liu, Qing-You [2 ]
Long, Xian-Jun [3 ]
Huang, Nan-jing [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
[2] SW Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610064, Sichuan, Peoples R China
[3] Chongqing Technol & Business Univ, Coll Math & Stat, Chongqing 400067, Peoples R China
基金
中国国家自然科学基金;
关键词
generalized vector equilibrium problem; weak efficient solution; scalarization; existence; connectedness; VARIATIONAL INEQUALITY; SCALARIZATION; EXISTENCE;
D O I
10.2478/s12175-011-0077-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a generalized vector equilibrium problem is introduced and studied. A scalar characterization of weak efficient solutions for the generalized vector equilibrium problem is obtained. By using the scalarization result, the existence of the weak efficient solutions and the connectedness of the set of weak efficient solutions for the generalized vector equilibrium problem are proved in locally convex spaces.
引用
收藏
页码:123 / 136
页数:14
相关论文
共 21 条
[1]   Generalized vector quasi-equilibrium problems with applications [J].
Ansari, QH ;
Flores-Bazán, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (01) :246-256
[2]  
Aubin J.P., 1994, Differential Inclusions
[3]   Vector equilibrium problems with generalized monotone bifunctions [J].
Bianchi, M ;
Hadjisavvas, N ;
Schaible, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 92 (03) :527-542
[4]  
Blum B., 1994, MATH STUDENT, V63, P123
[5]   A nonlinear scalarization function and generalized quasi-vector equilibrium problems [J].
Chen, GY ;
Yang, XQ ;
Yu, H .
JOURNAL OF GLOBAL OPTIMIZATION, 2005, 32 (04) :451-466
[6]  
Chen GY, 2005, LECT NOTES ECON MATH, V541, P1, DOI 10.1007/3-540-28445-1
[7]   On the connectedness of the solution set for the weak vector variational inequality [J].
Cheng, YH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (01) :1-5
[8]   A GENERALIZATION OF TYCHONOFF FIXED POINT THEOREM [J].
FAN, K .
MATHEMATISCHE ANNALEN, 1961, 142 (03) :305-310
[9]  
Giannessi F., 2000, VECTOR VARIATIONAL I
[10]   Connectedness of the set of efficient solutions for generalized systems [J].
Gong, X. H. ;
Yao, J. C. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 138 (02) :189-196