Modified Stacked Autoencoder Using Adaptive Morlet Wavelet for Intelligent Fault Diagnosis of Rotating Machinery

被引:154
作者
Shao, Haidong [1 ]
Xia, Min [2 ]
Wan, Jiafu [3 ]
de Silva, Clarence W. [4 ]
机构
[1] Hunan Univ, Coll Mech & Vehicle Engn, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China
[2] Univ Lancaster, Dept Engn, Lancaster LA1 4YW, England
[3] South China Univ Technol, Prov Key Lab Tech & Equipment Macromol Adv Mfg, Guangzhou 510640, Peoples R China
[4] Univ British Columbia, Dept Mech Engn, Vancouver, BC V6T 1Z4, Canada
基金
中国国家自然科学基金;
关键词
Vibrations; Wavelet analysis; Fault diagnosis; Cost function; Wavelet transforms; Training; Neural networks; Adaptive Morlet wavelet; fruit fly optimization; intelligent fault diagnosis; modified stacked autoencoder (MSAE); nonnegative constraint; SPARSE AUTOENCODERS; NEURAL-NETWORK; CLASSIFICATION; ALGORITHM; SYSTEM;
D O I
10.1109/TMECH.2021.3058061
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Intelligent fault diagnosis techniques play an important role in improving the abilities of automated monitoring, inference, and decision making for the repair and maintenance of machinery and processes. In this article, a modified stacked autoencoder (MSAE) that uses adaptive Morlet wavelet is proposed to automatically diagnose various fault types and severities of rotating machinery. First, the Morlet wavelet activation function is utilized to construct an MSAE to establish an accurate nonlinear mapping between the raw nonstationary vibration data and different fault states. Then, the nonnegative constraint is applied to enhance the cost function to improve sparsity performance and reconstruction quality. Finally, the fruit fly optimization algorithm is used to determine the adjustable parameters of the Morlet wavelet to flexibly match the characteristics of the analyzed data. The proposed method is used to analyze the raw vibration data collected from a sun gear unit and a roller bearing unit. Experimental results show that the proposed method is superior to other state-of-the-art methods.
引用
收藏
页码:24 / 33
页数:10
相关论文
共 50 条
  • [32] A DIMENSIONLESS IMMUNE INTELLIGENT FAULT DIAGNOSIS SYSTEM FOR ROTATING MACHINERY
    Shao, Longqiu
    Zhang, Qinghua
    Lei, Gaowei
    Su, Naiquan
    Yuan, Penghui
    TRANSACTIONS OF FAMENA, 2022, 46 (02) : 23 - 36
  • [33] Imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning
    Liu, Jie
    Zhou, Kaibo
    Yang, Chaoying
    Lu, Guoliang
    FRONTIERS OF MECHANICAL ENGINEERING, 2021, 16 (04) : 829 - 839
  • [34] Multiscale slope feature extraction for rotating machinery fault diagnosis using wavelet analysis
    Li, Peng
    Kong, Fanrang
    He, Qingbo
    Liu, Yongbin
    MEASUREMENT, 2013, 46 (01) : 497 - 505
  • [35] Intelligent Diagnosis Method for Rotating Machinery Using Wavelet Transform and Ant Colony Optimization
    Li, Ke
    Chen, Peng
    Wang, Huaqing
    IEEE SENSORS JOURNAL, 2012, 12 (07) : 2474 - 2484
  • [36] Attention Recurrent Autoencoder Hybrid Model for Early Fault Diagnosis of Rotating Machinery
    Kong, Xiangwei
    Li, Xueyi
    Zhou, Qingzhao
    Hu, Zhiyong
    Shi, Cheng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [37] A hybrid classification autoencoder for semi-supervised fault diagnosis in rotating machinery
    Wu, Xinya
    Zhang, Yan
    Cheng, Changming
    Peng, Zhike
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 149
  • [38] Signal-Transformer: A Robust and Interpretable Method for Rotating Machinery Intelligent Fault Diagnosis Under Variable Operating Conditions
    Tang, Jian
    Zheng, Guanhui
    Wei, Chao
    Huang, Wenbin
    Ding, Xiaoxi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [39] Fault Diagnosis for Rotating Machinery Using Multiple Sensors and Convolutional Neural Networks
    Xia, Min
    Li, Teng
    Xu, Lin
    Liu, Lizhi
    de Silva, Clarence W.
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2018, 23 (01) : 101 - 110
  • [40] Extreme learning Machine-based classifier for fault diagnosis of rotating Machinery using a residual network and continuous wavelet transform
    Wei, Hao
    Zhang, Qinghua
    Shang, Minghu
    Gu, Yu
    MEASUREMENT, 2021, 183