Modified Stacked Autoencoder Using Adaptive Morlet Wavelet for Intelligent Fault Diagnosis of Rotating Machinery

被引:154
|
作者
Shao, Haidong [1 ]
Xia, Min [2 ]
Wan, Jiafu [3 ]
de Silva, Clarence W. [4 ]
机构
[1] Hunan Univ, Coll Mech & Vehicle Engn, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China
[2] Univ Lancaster, Dept Engn, Lancaster LA1 4YW, England
[3] South China Univ Technol, Prov Key Lab Tech & Equipment Macromol Adv Mfg, Guangzhou 510640, Peoples R China
[4] Univ British Columbia, Dept Mech Engn, Vancouver, BC V6T 1Z4, Canada
基金
中国国家自然科学基金;
关键词
Vibrations; Wavelet analysis; Fault diagnosis; Cost function; Wavelet transforms; Training; Neural networks; Adaptive Morlet wavelet; fruit fly optimization; intelligent fault diagnosis; modified stacked autoencoder (MSAE); nonnegative constraint; SPARSE AUTOENCODERS; NEURAL-NETWORK; CLASSIFICATION; ALGORITHM; SYSTEM;
D O I
10.1109/TMECH.2021.3058061
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Intelligent fault diagnosis techniques play an important role in improving the abilities of automated monitoring, inference, and decision making for the repair and maintenance of machinery and processes. In this article, a modified stacked autoencoder (MSAE) that uses adaptive Morlet wavelet is proposed to automatically diagnose various fault types and severities of rotating machinery. First, the Morlet wavelet activation function is utilized to construct an MSAE to establish an accurate nonlinear mapping between the raw nonstationary vibration data and different fault states. Then, the nonnegative constraint is applied to enhance the cost function to improve sparsity performance and reconstruction quality. Finally, the fruit fly optimization algorithm is used to determine the adjustable parameters of the Morlet wavelet to flexibly match the characteristics of the analyzed data. The proposed method is used to analyze the raw vibration data collected from a sun gear unit and a roller bearing unit. Experimental results show that the proposed method is superior to other state-of-the-art methods.
引用
收藏
页码:24 / 33
页数:10
相关论文
共 50 条
  • [1] An autoencoder with adaptive transfer learning for intelligent fault diagnosis of rotating machinery
    Tang, Zhi
    Bo, Lin
    Liu, Xiaofeng
    Wei, Daiping
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (05)
  • [2] A novel deep autoencoder and hyperparametric adaptive learning for imbalance intelligent fault diagnosis of rotating machinery
    Li, Wanxiang
    Shang, Zhiwu
    Gao, Maosheng
    Qian, Shiqi
    Zhang, Baoren
    Zhang, Jie
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 102
  • [3] Fault diagnosis method of rotating machinery based on stacked denoising autoencoder
    Chen, Zhouliang
    Li, Zhinong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (06) : 3443 - 3449
  • [4] Stacked Sparse Autoencoder-Based Deep Network for Fault Diagnosis of Rotating Machinery
    Qi, Yumei
    Shen, Changqing
    Wang, Dong
    Shi, Juanjuan
    Jiang, Xingxing
    Zhu, Zhongkui
    IEEE ACCESS, 2017, 5 : 15066 - 15079
  • [5] A method for intelligent fault diagnosis of rotating machinery
    Chen, CZ
    Mo, CT
    DIGITAL SIGNAL PROCESSING, 2004, 14 (03) : 203 - 217
  • [6] Deep hypergraph autoencoder embedding: An efficient intelligent approach for rotating machinery fault diagnosis
    Shi, Mingkuan
    Ding, Chuancang
    Wang, Rui
    Song, Qiuyu
    Shen, Changqing
    Huang, Weiguo
    Zhu, Zhongkui
    KNOWLEDGE-BASED SYSTEMS, 2023, 260
  • [7] A Novel Rotating Machinery Fault Diagnosis System Using Ensemble Learning Capsule Autoencoder
    Chen, Hao
    Wang, Xian-Bo
    Yang, Zhi-Xin
    IEEE SENSORS JOURNAL, 2024, 24 (01) : 1018 - 1027
  • [8] Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
    Lu, Chen
    Wang, Zhen-Ya
    Qin, Wei -Li
    Ma, Jian
    SIGNAL PROCESSING, 2017, 130 : 377 - 388
  • [9] A rule-based intelligent method for fault diagnosis of rotating machinery
    Dou, Dongyang
    Yang, Jianguo
    Liu, Jiongtian
    Zhao, Yingkai
    KNOWLEDGE-BASED SYSTEMS, 2012, 36 : 1 - 8
  • [10] An Efficient Sequential Embedding ConvNet for Rotating Machinery Intelligent Fault Diagnosis
    Tang, Jian
    Wu, Qihang
    Li, Xiaobo
    Wei, Chao
    Ding, Xiaoxi
    Huang, Wenbin
    Shao, Yimin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72