GLOBAL WELL-POSEDNESS FOR N-DIMENSIONAL BOUSSINESQ SYSTEM WITH VISCOSITY DEPENDING ON TEMPERATURE

被引:3
作者
Zhai, Xiaoping [1 ]
Chen, Zhi-Min [1 ]
机构
[1] Shenzhen Univ, Sch Math & Stat, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Global well-posedness; Boussinesq system; Littlewood-Paley theory; NAVIER-STOKES EQUATIONS; LAGRANGIAN APPROACH; WELLPOSEDNESS; REGULARITY;
D O I
10.4310/CMS.2018.v16.n5.a12
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the global well-posedness issue for the Boussinesq system with the temperature-dependent viscosity in R-n (n >= 2). With a temperature damping term, we first get a global solution in R-2, provided the initial temperature is exponentially small compared with the initial velocity field. Then, using a weighted Chemin-Lerner-type norm, we can also give a global large solution in R n if the initial data satisfies a nonlinear smallness condition. In particular, our results imply the global large solutions without any smallness conditions imposed on the initial velocity.
引用
收藏
页码:1427 / 1449
页数:23
相关论文
共 26 条
[1]   On the global well-posedness for Boussinesq system [J].
Abidi, H. ;
Hmidi, T. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (01) :199-220
[2]   On the global well-posedness of 2-D Boussinesq system with variable viscosity [J].
Abidi, Hammadi ;
Zhang, Ping .
ADVANCES IN MATHEMATICS, 2017, 305 :1202-1249
[3]   On the global well-posedness of 2-D inhomogeneous incompressible Nayier Stokes system with variable viscous coefficient [J].
Abidi, Hammadi ;
Zhang, Ping .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) :3755-3802
[4]   Small global solutions to the damped two-dimensional Boussinesq equations [J].
Adhikari, Dhanapati ;
Cao, Chongsheng ;
Wu, Jiahong ;
Xu, Xiaojing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (11) :3594-3613
[5]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[6]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513
[7]   The 2D Boussinesq equations with logarithmically supercritical velocities [J].
Chae, Dongho ;
Wu, Jiahong .
ADVANCES IN MATHEMATICS, 2012, 230 (4-6) :1618-1645
[8]   Density-dependent incompressible viscous fluids in critical spaces [J].
Danchin, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :1311-1334
[9]   Global persistence of geometrical structures for the Boussinesq equation with no diffusion [J].
Danchin, Raphael ;
Zhang, Xin .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (01) :68-99
[10]   A LAGRANGIAN APPROACH FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
Danchin, Raphael .
ANNALES DE L INSTITUT FOURIER, 2014, 64 (02) :753-791