New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation

被引:319
作者
Zhuang, P. [1 ]
Liu, F. [2 ,3 ]
Anh, V. [2 ]
Turner, I. [2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361006, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[3] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R China
关键词
anomalous subdiffusion equation; implicit numerical method; stability; convergence; fractional integro-differential equation;
D O I
10.1137/060673114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A physical-mathematical approach to anomalous diffusion is based on a generalized diffusion equation containing derivatives of fractional order. In this paper, an anomalous subdiffusion equation (ASub-DE) is considered. A new implicit numerical method (INM) and two solution techniques for improving the order of convergence of the INM for solving the ASub-DE are proposed. The stability and convergence of the INM are investigated by the energy method. Some numerical examples are given. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and supporting theoretical results can also be applied to other fractional integro-differential equations and higher-dimensional problems.
引用
收藏
页码:1079 / 1095
页数:17
相关论文
共 50 条
  • [31] A spatially second-order accurate implicit numerical method for the space and time fractional Bloch-Torrey equation
    Song, J.
    Yu, Q.
    Liu, F.
    Turner, I.
    NUMERICAL ALGORITHMS, 2014, 66 (04) : 911 - 932
  • [32] The comparison of the stability of Adomian decomposition method with numerical methods of equation solution
    Aminataei, A.
    Hosseini, S. S.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (01) : 665 - 669
  • [33] A novel compact numerical method for solving the two-dimensional non-linear fractional reaction-subdiffusion equation
    Bo Yu
    Xiaoyun Jiang
    Huanying Xu
    Numerical Algorithms, 2015, 68 : 923 - 950
  • [34] A novel compact numerical method for solving the two-dimensional non-linear fractional reaction-subdiffusion equation
    Yu, Bo
    Jiang, Xiaoyun
    Xu, Huanying
    NUMERICAL ALGORITHMS, 2015, 68 (04) : 923 - 950
  • [35] Numerical and analytical investigations for solution of fractional Gilson-Pickering equation arising in plasma physics
    Sagar, B.
    Ray, S. Saha
    MODERN PHYSICS LETTERS B, 2022, 36 (13):
  • [36] ANALYTICAL-NUMERICAL SOLUTION OF THE INVERSE PROBLEM FOR THE HEAT CONDUCTION EQUATION
    Cialkowski, Michal
    Mackiewicz, Andrzej
    Kolodziej, Jan Adam
    Gampe, Uwe
    Frackowiak, Andrzej
    JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2012, 7 (03) : 239 - 253
  • [37] Analytical solution and nonconforming finite element approximation for the 2D multi-term fractional subdiffusion equation
    Zhao, Y. M.
    Zhang, Y. D.
    Liu, F.
    Turner, I.
    Shi, D. Y.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (19-20) : 8810 - 8825
  • [38] Analytical solution of the droplet breakup equation by the Adomian decomposition method
    Hasseine, A.
    Bellagoun, A.
    Bart, H. -J.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (05) : 2249 - 2258
  • [39] A new Crank-Nicolson finite element method for the time-fractional subdiffusion equation
    Zeng, Fanhai
    Li, Changpin
    APPLIED NUMERICAL MATHEMATICS, 2017, 121 : 82 - 95
  • [40] A New Numerical Approach for Variable-Order Time-Fractional Modified Subdiffusion Equation via Riemann-Liouville Fractional Derivative
    Fathima, Dowlath
    Naeem, Muhammad
    Ali, Umair
    Ganie, Abdul Hamid
    Abdullah, Farah Aini
    SYMMETRY-BASEL, 2022, 14 (11):