New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation

被引:319
|
作者
Zhuang, P. [1 ]
Liu, F. [2 ,3 ]
Anh, V. [2 ]
Turner, I. [2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361006, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[3] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R China
关键词
anomalous subdiffusion equation; implicit numerical method; stability; convergence; fractional integro-differential equation;
D O I
10.1137/060673114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A physical-mathematical approach to anomalous diffusion is based on a generalized diffusion equation containing derivatives of fractional order. In this paper, an anomalous subdiffusion equation (ASub-DE) is considered. A new implicit numerical method (INM) and two solution techniques for improving the order of convergence of the INM for solving the ASub-DE are proposed. The stability and convergence of the INM are investigated by the energy method. Some numerical examples are given. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and supporting theoretical results can also be applied to other fractional integro-differential equations and higher-dimensional problems.
引用
收藏
页码:1079 / 1095
页数:17
相关论文
共 50 条
  • [21] Numerical method for two dimensional fractional reaction subdiffusion equation
    Huang, H.
    Cao, X.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (08): : 1961 - 1973
  • [22] Analytical Techniques for a Numerical Solution of the Linear Volterra Integral Equation of the Second Kind
    Berenguer, M. I.
    Gamez, D.
    Garralda-Guillem, A. I.
    Ruiz Galan, M.
    Serrano Perez, M. C.
    ABSTRACT AND APPLIED ANALYSIS, 2009,
  • [23] NUMERICAL SCHEMES WITH HIGH SPATIAL ACCURACY FOR A VARIABLE-ORDER ANOMALOUS SUBDIFFUSION EQUATION
    Chen, Chang-Ming
    Liu, F.
    Anh, V.
    Turner, I.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04): : 1740 - 1760
  • [24] An implicit numerical method for the solution of the fractional advection-diffusion equation with delay
    Pimenov, V. G.
    Hendy, A. S.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (02): : 218 - 226
  • [25] Analytical solution of the generalized Langevin equation with hydrodynamic interactions: Subdiffusion of heavy tracers
    Grebenkov, Denis S.
    Vahabi, Mahsa
    PHYSICAL REVIEW E, 2014, 89 (01):
  • [26] IMPROVEMENTS ON A NEW METHOD FOR NUMERICAL SOLUTION OF SCHRODINGER EQUATION
    GRIMM, RC
    STORER, RG
    DAVIES, B
    JOURNAL OF COMPUTATIONAL PHYSICS, 1972, 9 (03) : 538 - &
  • [27] Numerical Solution of Fractional Order Anomalous Subdiffusion Problems Using Radial Kernels and Transform
    Taufiq, Muhammad
    Uddin, Marjan
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [28] Efficient finite element numerical solution of the variable coefficient fractional subdiffusion equation
    Lin He
    Juncheng Lv
    Advances in Difference Equations, 2019
  • [29] FURTHER NOTES ON CONVERGENCE TECHNIQUES FOR IMPLICIT NUMERICAL SOLUTION OF DIFFUSION EQUATION FOR TRANSIENT HEAT TRANSFER
    KAPLAN, B
    POPPE, RT
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1964, 7 (01): : 5 - &
  • [30] Numerical method for solving the subdiffusion differential equation with nonlocal boundary conditions
    Sultanov, Murat A.
    Misilov, Vladimir E.
    Sadybekov, Makhmud A.
    AIMS MATHEMATICS, 2024, 9 (12): : 36385 - 36404