New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation

被引:319
|
作者
Zhuang, P. [1 ]
Liu, F. [2 ,3 ]
Anh, V. [2 ]
Turner, I. [2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361006, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[3] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R China
关键词
anomalous subdiffusion equation; implicit numerical method; stability; convergence; fractional integro-differential equation;
D O I
10.1137/060673114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A physical-mathematical approach to anomalous diffusion is based on a generalized diffusion equation containing derivatives of fractional order. In this paper, an anomalous subdiffusion equation (ASub-DE) is considered. A new implicit numerical method (INM) and two solution techniques for improving the order of convergence of the INM for solving the ASub-DE are proposed. The stability and convergence of the INM are investigated by the energy method. Some numerical examples are given. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and supporting theoretical results can also be applied to other fractional integro-differential equations and higher-dimensional problems.
引用
收藏
页码:1079 / 1095
页数:17
相关论文
共 50 条
  • [1] The Implicit Numerical Method for the Radial Anomalous Subdiffusion Equation
    Blasik, Marek
    SYMMETRY-BASEL, 2023, 15 (09):
  • [2] Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
    Liu, F.
    Yang, C.
    Burrage, K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 231 (01) : 160 - 176
  • [3] The implicit numerical method for the one-dimensional anomalous subdiffusion equation with a nonlinear soruce term
    Blasik, Marek
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2021, 69 (06)
  • [4] Numerical Method for the Solution of the One-Dimensional Anomalous Subdiffusion Equation with a Variable Diffusion Coefficient
    Blasik, M.
    ACTA PHYSICA POLONICA A, 2020, 138 (02) : 228 - 231
  • [5] Numerical method with high order accuracy for solving a anomalous subdiffusion equation
    Chen, Y.
    Chen, Chang-Ming
    NUMERICAL ALGORITHMS, 2016, 72 (03) : 687 - 703
  • [6] High order numerical method and its analysis of the anomalous subdiffusion equation
    Zhang, Jigang
    Ye, Chao
    INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, 2012, 31 : 781 - 790
  • [7] Numerical method with high order accuracy for solving a anomalous subdiffusion equation
    Y. Chen
    Chang-Ming Chen
    Numerical Algorithms, 2016, 72 : 687 - 703
  • [8] A New Variant of B-Spline for the Solution of Modified Fractional Anomalous Subdiffusion Equation
    Hashmi, M. S.
    Shehzad, Zainab
    Ashraf, Asifa
    Zhang, Zhiyue
    Lv, Yu-Pei
    Ghaffar, Abdul
    Inc, Mustafa
    Aly, Ayman A.
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [9] An Advanced Implicit Meshless Approach for the Non-linear Anomalous Subdiffusion Equation
    Gu, Y. T.
    Zhuang, P.
    Liu, F.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 56 (03): : 303 - 333
  • [10] An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation
    Gu, Y.T.
    Zhuang, P.
    Liu, F.
    CMES - Computer Modeling in Engineering and Sciences, 2010, 56 (03): : 303 - 333