New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation

被引:321
作者
Zhuang, P. [1 ]
Liu, F. [2 ,3 ]
Anh, V. [2 ]
Turner, I. [2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361006, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[3] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R China
关键词
anomalous subdiffusion equation; implicit numerical method; stability; convergence; fractional integro-differential equation;
D O I
10.1137/060673114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A physical-mathematical approach to anomalous diffusion is based on a generalized diffusion equation containing derivatives of fractional order. In this paper, an anomalous subdiffusion equation (ASub-DE) is considered. A new implicit numerical method (INM) and two solution techniques for improving the order of convergence of the INM for solving the ASub-DE are proposed. The stability and convergence of the INM are investigated by the energy method. Some numerical examples are given. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and supporting theoretical results can also be applied to other fractional integro-differential equations and higher-dimensional problems.
引用
收藏
页码:1079 / 1095
页数:17
相关论文
共 26 条
[1]   Spectral analysis of fractional kinetic equations with random data [J].
Anh, VV ;
Leonenko, NN .
JOURNAL OF STATISTICAL PHYSICS, 2001, 104 (5-6) :1349-1387
[2]  
CAO X, UNPUB VARIABLE STEPS
[3]  
GORENFLO R, 2000, FRACTIONAL CALCULUS, V3, P75
[4]   The time fractional diffusion equation and the advection-dispersion equation [J].
Huang, F ;
Liu, F .
ANZIAM JOURNAL, 2005, 46 :317-330
[5]  
Kilbas A A., 2002, The Journal of Integral Equations and Applications, V14, P377, DOI [10.1216/jiea/1181074929, DOI 10.1216/JIEA/1181074929]
[6]  
Kutner R., 1999, ANOMALOUS DIFFUSION
[7]   The accuracy and stability of an implicit solution method for the fractional diffusion equation [J].
Langlands, TAM ;
Henry, BI .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 205 (02) :719-736
[8]   Fractional high order methods for the nonlinear fractional ordinary differential equation [J].
Lin, R. ;
Liu, F. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (04) :856-869
[9]   Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation [J].
Liu, F. ;
Zhuang, P. ;
Anh, V. ;
Turner, I. ;
Burrage, K. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 191 (01) :12-20
[10]   Numerical solution of the space fractional Fokker-Planck equation [J].
Liu, F ;
Anh, V ;
Turner, I .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 166 (01) :209-219