Design optimization of distribution transformers with nature-inspired metaheuristics: a comparative analysis

被引:2
|
作者
Alhan, Levent [1 ]
Yumusak, Nejat [1 ]
机构
[1] Sakarya Univ, Fac Comp & Informat Sci, Dept Comp Engn, Sakarya, Turkey
关键词
Distribution transformer; transformer design optimization; high efficiency; metaheuristics; swarm intelligence; differential evolution; ALGORITHM;
D O I
10.3906/elk-1701-231
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many economies in the world have adopted energy-efficiency requirements or incentive programs mandating or promoting the use of energy-efficient transformers. On the other hand, increases in transformer efficiency are subject to increases in transformer weight and size, sometimes as much as 50% or more. The transformer manufacturing industry is therefore faced with the challenge to develop truly optimum designs. Transformer design optimization (TDO) is a mixed integer nonlinear programming problem having a complex and discontinuous objective function and constraints, with the objective of detailed calculation of the characteristics of a transformer based on national and/or international standards and transformer user requirements, using available materials and manufacturing processes, to minimize manufacturing cost or total owning cost while maximizing operating performance. This paper gives a detailed comparative analysis of the application of five modern nature-inspired metaheuristic optimization algorithms for the solution of the TDO problem, demonstrated on three test cases, and proposes two algorithms, for which it has been verified that they possess guaranteed global convergence properties in spite of their inherent stochastic nature. A pragmatic benchmarking scheme is used for comparison of the algorithms. It is expected that the use of these two algorithms would have a significant contribution to the reduction of the design and manufacturing costs of transformers.
引用
收藏
页码:4673 / 4684
页数:12
相关论文
共 50 条
  • [31] Nature-inspired approach: An enhanced whale optimization algorithm for global optimization
    Yan, Zheping
    Zhang, Jinzhong
    Zeng, Jia
    Tang, Jialing
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 185 : 17 - 46
  • [32] Quokka swarm optimization: A new nature-inspired metaheuristic optimization algorithm
    AL-kubaisy, Wijdan Jaber
    AL-Khateeb, Belal
    JOURNAL OF INTELLIGENT SYSTEMS, 2024, 33 (01)
  • [33] Nature-Inspired Approach: A Novel Rat Optimization Algorithm for Global Optimization
    Yan, Pianpian
    Zhang, Jinzhong
    Zhang, Tan
    BIOMIMETICS, 2024, 9 (12)
  • [34] Optimization designs in patch antennas using nature-inspired metaheuristic algorithms: A review
    Fernando Poveda-Pulla, Danilo
    Vicente Dominguez-Paute, Jefferson
    Fernando Guerrero-Vasquez, Luis
    Andres Chasi-Pesantez, Paul
    Osmani Ordonez-Ordonez, Jorge
    Esteban Vintimilla-Tapia, Paul
    2018 IEEE BIENNIAL CONGRESS OF ARGENTINA (ARGENCON), 2018,
  • [35] African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems
    Abdollahzadeh, Benyamin
    Gharehchopogh, Farhad Soleimanian
    Mirjalili, Seyedali
    COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 158
  • [36] REVIEW OF NATURE-INSPIRED OPTIMIZATION ALGORITHMS APPLIED IN CIVIL ENGINEERING
    Obradovic, Dino
    ELECTRONIC JOURNAL OF THE FACULTY OF CIVIL ENGINEERING OSIJEK-E-GFOS, 2018, 17 : 74 - 88
  • [37] Synergistic fibroblast optimization: a novel nature-inspired computing algorithm
    Dhivyaprabha, T. T.
    Subashini, P.
    Krishnaveni, M.
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2018, 19 (07) : 815 - 833
  • [38] GREPHRO: Nature-inspired optimization duo for Internet-of-Things
    Kumar, Gulshan
    Saha, Rahul
    Conti, Mauro
    Devgun, Tannishtha
    Thomas, Reji
    INTERNET OF THINGS, 2024, 25
  • [39] A comparative evaluation of nature-inspired algorithms for feature selection problems
    Premalatha, Mariappan
    Jayasudha, Murugan
    Cep, Robert
    Priyadarshini, Jayaraju
    Kalita, Kanak
    Chatterjee, Prasenjit
    HELIYON, 2024, 10 (01)
  • [40] Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer
    Agushaka, Jeffrey O.
    Ezugwu, Absalom E.
    Abualigah, Laith
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (05) : 4099 - 4131