Background Subtraction Based on Nonparametric Bayesian Estimation

被引:4
作者
He, Yan [1 ]
Wang, Donghui [1 ]
Zhu, Miaoliang [1 ]
机构
[1] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310003, Zhejiang, Peoples R China
来源
THIRD INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2011) | 2011年 / 8009卷
关键词
Background subtraction; nonparametric methods; Dirichlet process mixture; DENSITY-ESTIMATION;
D O I
10.1117/12.896509
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Background subtraction, the task of separating foreground pixels from background pixels in a video, is an important step in video processing. Comparing with the parametric background modeling methods, nonparametric methods use a model selection criterion to choose the right number of components for each pixel online. We model the background subtraction problem with the Dirichlet process mixture, which constantly adapts both the parameters and the number of components of the mixture to the scene.
引用
收藏
页数:5
相关论文
共 12 条
[1]  
[Anonymous], 2010, ENCY MACHINE LEARNIN
[2]   MIXTURES OF DIRICHLET PROCESSES WITH APPLICATIONS TO BAYESIAN NONPARAMETRIC PROBLEMS [J].
ANTONIAK, CE .
ANNALS OF STATISTICS, 1974, 2 (06) :1152-1174
[3]   Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking [J].
Elgammal, A ;
Duraiswami, R ;
Davis, LS .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (11) :1499-1504
[4]  
ELGAMMAL A, 2000, EUR C COMP VIS
[5]   BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS [J].
FERGUSON, TS .
ANNALS OF STATISTICS, 1973, 1 (02) :209-230
[6]  
Friedman N., 1997, PROC UNCERTAINTY ART, P175
[7]  
Karmann K.P., 1990, Time-Varying Image Processing and Moving Object Recognition, V2nd, P289
[8]  
MCAULIFFE JD, 2004, NONPARAMETRIC EMPIRI
[9]   Nonparametric Bayesian image segmentation [J].
Orbanz, Peter ;
Buhmann, Joachim M. .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2008, 77 (1-3) :25-45
[10]  
WERN CR, 1997, IEEE T PATTERN ANAL, V19, P780