Measures of localization and quantitative Nyquist densities

被引:13
作者
Abreu, Luis Daniel [1 ]
Pereira, Joao M. [2 ]
机构
[1] Austrian Acad Sci, Acoust Res Inst, A-1040 Vienna, Austria
[2] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
关键词
OPERATORS; UNCERTAINTY; THEOREM; SPECTRA; SPACES;
D O I
10.1016/j.acha.2014.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a refinement of the degrees of freedom estimate of Landau and Pollak. More precisely, we estimate, in terms of is an element of, the increase in the degrees of freedom resulting upon allowing the functions to contain a certain prescribed amount of energy is an element of outside a region delimited by a set T in time and a set Omega in frequency. In this situation, the lower asymptotic Nyquist density |T||Omega|/2 pi is increased to (1 + is an element of) |T||Omega|/2 pi. At the technical level, we prove a pseudospectra version of the classical spectral dimension result of Landau and Pollak, in the multivariate setting of Landau. Analogous results are obtained for Gabor localization operators in a compact region of the time-frequency plane. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:524 / 534
页数:11
相关论文
共 20 条
[1]   An inverse problem for localization operators [J].
Abreu, Luis Daniel ;
Doerfler, Monika .
INVERSE PROBLEMS, 2012, 28 (11)
[2]   Landau's necessary density conditions for the Hankel transform [J].
Abreu, Luis Daniel ;
Bandeira, Afonso S. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (04) :1845-1866
[3]   Time-frequency analysis of localization operators [J].
Cordero, E ;
Gröchenig, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 205 (01) :107-131
[4]   TIME FREQUENCY LOCALIZATION OPERATORS - A GEOMETRIC PHASE-SPACE APPROACH [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (04) :605-612
[5]  
Daubechies I, 1992, CBMS NSF REGIONAL C
[6]   Uniform eigenvalue estimates for time-frequency localization operators [J].
De Mari, F ;
Feichtinger, HG ;
Nowak, K .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 65 :720-732
[7]   UNCERTAINTY PRINCIPLES AND SIGNAL RECOVERY [J].
DONOHO, DL ;
STARK, PB .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (03) :906-931
[8]   A Szego-type theorem for Gabor-Toeplitz localization operators [J].
Feichtinger, HG ;
Nowak, K .
MICHIGAN MATHEMATICAL JOURNAL, 2001, 49 (01) :13-21
[9]  
Gröchenig K, 2013, T AM MATH SOC, V365, P4475
[10]   On the approximation of spectra of linear operators on Hilbert spaces [J].
Hansen, Anders C. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (08) :2092-2126