Global asymptotic stability of a tracking sectorial fuzzy controller for robot manipulators

被引:27
作者
Santibañez, V
Kelly, R
Llama, MA
机构
[1] Inst Tech Laguna, Torreon Coahuila 27001, Mexico
[2] CICESE, Div Fis Appl, Ensenada 22800, Baja California, Mexico
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS | 2004年 / 34卷 / 01期
关键词
fuzzy control; robot control; stability analysis;
D O I
10.1109/TSMCB.2003.811764
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper shows that fuzzy control systems satisfying sectorial properties are effective for motion tracking control of rolbot manipulators. We propose a controller whose structure is composed by a sectorial fuzzy controller plus a full nonlinear robot dynamics compensation, in such a way that this structure leads to a very simple closed-loop system represented by an autonomous nonlinear differential equation. We demonstrate via Lyapunov theory, that the closed-loop system is globally asymptotically stable. Experimental results show the feasibility of the proposed controller.
引用
收藏
页码:710 / 718
页数:9
相关论文
共 20 条
[1]  
BEGON G, 1995, P IEEE INT C ROB AUT, P1178
[2]   Some remarks on the stability of Mamdani fuzzy control systems [J].
Calcev, G .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1998, 6 (03) :436-442
[3]   Passivity approach to fuzzy control systems [J].
Calcev, G ;
Gorez, R ;
De Neyer, M .
AUTOMATICA, 1998, 34 (03) :339-344
[4]  
Chen TH, 2001, IEEE SIGNAL PROC MAG, V18, P9
[5]  
Commuri S, 1996, IEEE INT CONF ROBOT, P2604, DOI 10.1109/ROBOT.1996.506555
[6]   Integrator backstepping control of a brush DC motor turning a robotic load [J].
Dawson, D.M. ;
Carroll, J.J. ;
Schneider, M. .
IEEE Transactions on Control Systems Technology, 1994, 2 (03) :233-244
[7]   Reexamination of the DCAL controller for rigid link robots [J].
deQueiroz, MS ;
Dawson, D ;
Burg, T .
ROBOTICA, 1996, 14 :41-49
[8]  
FUKUDA T, 1992, P INT J C NEUR NETW, V1, P269
[9]  
HSU Y, 1997, P 1997 IEEE INT C RO, P1412
[10]  
Kelly R, 1999, INTELL AUTOM SOFT CO, V5, P313