Probability distribution of the shortest path on the percolation cluster, its backbone, and skeleton

被引:19
|
作者
Porto, M
Havlin, S
Roman, HE
Bunde, A
机构
[1] Univ Giessen, Inst Theoret Phys 3, D-35392 Giessen, Germany
[2] Bar Ilan Univ, Minerva Ctr, IL-52900 Ramat Gan, Israel
[3] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[4] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
来源
PHYSICAL REVIEW E | 1998年 / 58卷 / 05期
关键词
D O I
10.1103/PhysRevE.58.R5205
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the mean distribution functions Phi(r\l), Phi(B)(r\l), and Phi(S)(r\l), giving the probability that two sites on the incipient percolation cluster, on its backbone and on its skeleton, respectively, connected by a shortest path of length l are separated by an Euclidean distance r. Following a scaling argument due to de Gennes for self-avoiding walks, we derive analytical expressions for the exponents g(1)=d(f)+d(min)-d and g(1)(B)=g(1)(S)-3d(min)-d, which determine the scaling behavior of the distribution functions in the limit x=r/l(<(nu)over tilde>) much less than 1, i.e., Phi (r\l) proportional to l(-<(nu)over tilde>d)x(g1), Phi(B)(r\l) proportional to l(-<(nu)over tilde>d)x(g1B), and Phi(S)(r\l) proportional to l(-<(nu)over tilde>d)x(g1S), with <(nu)over tilde> = 1/d(min), where d(f) and d(min) are the fractal dimensions of the percolation cluster and the shortest path, respectively. The theoretical predictions for g(1), g(1)(B), and g(1)(S) are in very good agreement with our numerical results. [S1063-651X(98)50411-4].
引用
收藏
页码:R5205 / R5208
页数:4
相关论文
共 50 条
  • [1] FLORY CALCULATION OF THE FRACTAL DIMENSIONALITY OF THE SHORTEST-PATH IN A PERCOLATION CLUSTER
    ROUX, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (07): : L395 - L397
  • [2] DISTRIBUTION OF SHORTEST-PATH LENGTHS IN PERCOLATION ON A HIERARCHICAL LATTICE
    BARMA, M
    RAY, P
    PHYSICAL REVIEW B, 1986, 34 (05): : 3403 - 3407
  • [3] Distribution of shortest paths in percolation
    Dokholyan, Nikolay V.
    Buldyrev, Sergey V.
    Havlin, Shlomo
    King, Peter R.
    Lee, Youngki
    Stanley, H. Eugene
    Physica A: Statistical Mechanics and its Applications, 1999, 266 (1-4) : 55 - 61
  • [4] Distribution of shortest paths in percolation
    Dokholyan, NV
    Buldyrev, SV
    Havlin, S
    King, PR
    Lee, Y
    Stanley, HE
    PHYSICA A, 1999, 266 (1-4): : 55 - 61
  • [5] Shortest-Path Percolation on Random Networks
    Kim, Minsuk
    Radicchi, Filippo
    Physical Review Letters, 2024, 133 (04)
  • [6] Sequential disruption of the shortest path in critical percolation
    Gschwend, Oliver
    Herrmann, Hans J.
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [7] Cluster, backbone, and elastic backbone structures of the multiple invasion percolation
    Onody, RN
    Zara, RA
    PHYSICAL REVIEW E, 1997, 56 (03): : 2548 - 2552
  • [8] Scaling of the Distribution of Shortest Paths in Percolation
    Nikolay V. Dokholyan
    Youngki Lee
    Sergey V. Buldyrev
    Shlomo Havlin
    Peter R. King
    H. Eugene Stanley
    Journal of Statistical Physics, 1998, 93 : 603 - 613
  • [9] Maximum probability shortest path problem
    Cheng, Jianqiang
    Lisser, Abdel
    DISCRETE APPLIED MATHEMATICS, 2015, 192 : 40 - 48
  • [10] Scaling of the distribution of shortest paths in percolation
    Dokholyan, NV
    Lee, YK
    Buldyrev, SV
    Havlin, S
    King, PR
    Stanley, HE
    JOURNAL OF STATISTICAL PHYSICS, 1998, 93 (3-4) : 603 - 613