Convergence of two-dimensional staggered central schemes on unstructured triangular grids

被引:5
作者
Jannoun, G. [1 ,2 ]
Touma, R. [1 ]
Brock, F. [2 ]
机构
[1] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[2] Amer Univ Beirut, Dept Math, Beirut, Lebanon
关键词
Central schemes; Unstructured grids; Convergence analysis; Stability condition; NONOSCILLATORY CENTRAL SCHEMES; LAX-FRIEDRICHS SCHEME; FINITE-VOLUME SCHEMES; CONSERVATION-LAWS;
D O I
10.1016/j.apnum.2015.01.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a convergence analysis of a two-dimensional central finite volume scheme on unstructured triangular grids for hyperbolic systems of conservation laws. More precisely, we show that the solution obtained by the numerical base scheme presents, under an appropriate CFL condition, an optimal convergence to the unique entropy solution of the Cauchy problem. (C) 2015 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 10 条
[1]   Convergence of a finite volume extension of the Nessyahu-Tadmor scheme on unstructured grids for a two-dimensional linear hyperbolic equation [J].
Arminjon, P ;
Viallon, MC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) :738-771
[2]  
Arminjon P, 1998, INT J COMPUT FLUID D, V9, pI
[3]  
Chainais-Hillairet C, 1999, RAIRO-MATH MODEL NUM, V33, P129
[4]   New non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws [J].
Christov, Ivan ;
Popov, Bojan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (11) :5736-5757
[5]  
COCKBURN B, 1994, MATH COMPUT, V63, P77, DOI 10.1090/S0025-5718-1994-1240657-4
[6]  
Haasdonk B, 2001, NUMER MATH, V88, P459, DOI 10.1007/s002110000239
[7]  
KRONER D, 1994, SIAM J NUMER ANAL, V31, P324
[8]   Error estimates for the staggered Lax-Friedrichs scheme on unstructured grids [J].
Küther, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (04) :1269-1301
[9]   The optimal convergence rate of monotone finite difference methods for hyperbolic conservation laws [J].
Sabac, F .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (06) :2306-2318
[10]   Non-oscillatory central schemes on unstructured grids for two-dimensional hyperbolic conservation laws [J].
Touma, R. ;
Jannoun, G. .
APPLIED NUMERICAL MATHEMATICS, 2012, 62 (08) :941-955