Mathematical programming techniques in water network optimization

被引:118
作者
D'Ambrosio, Claudia [1 ,2 ]
Lodi, Andrea [3 ]
Wiese, Sven [3 ]
Bragalli, Cristiana [4 ]
机构
[1] Ecole Polytech, CNRS, F-91128 Palaiseau, France
[2] Ecole Polytech, LIX, F-91128 Palaiseau, France
[3] Univ Bologna, DEI, I-40136 Bologna, Italy
[4] Univ Bologna, DICAM, I-40136 Bologna, Italy
关键词
Networks; Mixed Integer Nonlinear Programming; Combinatorial optimization; Global optimization; ALGORITHMS; FRAMEWORK; SYSTEMS; DESIGN;
D O I
10.1016/j.ejor.2014.12.039
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article we survey mathematical programming approaches to problems in the field of drinking water distribution network optimization. Among the predominant topics treated in the literature, we focus on two different, but related problem classes. One can be described by the notion of network design, while the other is more aptly termed by network operation. The basic underlying model in both cases is a nonlinear network flow model, and we give an overview on the more specific modeling aspects in each case. The overall mathematical model is a Mixed Integer Nonlinear Program having a common structure with respect to how water dynamics in pipes are described. Finally, we survey the algorithmic approaches to solve the proposed problems and we discuss computation on various types of water networks. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:774 / 788
页数:15
相关论文
共 43 条
[1]   FilMINT: An Outer Approximation-Based Solver for Convex Mixed-Integer Nonlinear Programs [J].
Abhishek, Kumar ;
Leyffer, Sven ;
Linderoth, Jeff .
INFORMS JOURNAL ON COMPUTING, 2010, 22 (04) :555-567
[2]   SCIP: solving constraint integer programs [J].
Achterberg, Tobias .
MATHEMATICAL PROGRAMMING COMPUTATION, 2009, 1 (01) :1-41
[3]  
[Anonymous], 2013, Facets of combinatorial optimization
[4]   Least-cost design of water distribution networks under demand uncertainty [J].
Babayan, A ;
Kapelan, Z ;
Savic, D ;
Walters, G .
JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE, 2005, 131 (05) :375-382
[5]   Mixed-integer nonlinear optimization [J].
Belotti, Pietro ;
Kirches, Christian ;
Leyffer, Sven ;
Linderoth, Jeff ;
Luedtke, James ;
Mahajan, Ashutosh .
ACTA NUMERICA, 2013, 22 :1-131
[6]   Branching and bounds tightening techniques for non-convex MINLP [J].
Belotti, Pietro ;
Lee, Jon ;
Liberti, Leo ;
Margot, Francois ;
Waechter, Andreas .
OPTIMIZATION METHODS & SOFTWARE, 2009, 24 (4-5) :597-634
[7]  
Berthold T, 2012, IMA VOL MATH APPL, V154, P427
[8]   An algorithmic framework for convex mixed integer nonlinear programs [J].
Bonami, Pierre ;
Biegler, Lorenz T. ;
Conna, Andrew R. ;
Cornuejols, Gerard ;
Grossmann, Ignacio E. ;
Laird, Carl D. ;
Lee, Jon ;
Lodi, Andrea ;
Margot, Francois ;
Sawaya, Nicolas ;
Wachter, Andreas .
DISCRETE OPTIMIZATION, 2008, 5 (02) :186-204
[9]   On the optimal design of water distribution networks: a practical MINLP approach [J].
Bragalli, Cristiana ;
D'Ambrosio, Claudia ;
Lee, Jon ;
Lodi, Andrea ;
Toth, Paolo .
OPTIMIZATION AND ENGINEERING, 2012, 13 (02) :219-246
[10]  
Burgschweiger J., 2009, OPTIMIZATION ENG, V10, P343