Path integrals and degrees of freedom in many-body systems and relativistic field theories

被引:0
作者
Palumbo, F [1 ]
机构
[1] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy
关键词
D O I
10.1134/1.1935021
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The identification of physical degrees of freedom is sometimes obscured in the path-integral formalism, and this makes it difficult to impose some constraints or to do some approximations. I review a number of cases where the difficulty is overcome by deriving the path integral from the operator form of the partition function after such identification has been made. (c) 2005 Pleiades Publishing, Inc.
引用
收藏
页码:892 / 898
页数:7
相关论文
共 50 条
[41]   THE RELATIVISTIC NUCLEAR MANY-BODY PROBLEM [J].
SEROT, BD ;
WALECKA, JD .
ADVANCES IN NUCLEAR PHYSICS, 1986, 16 :1-320
[42]   Local integrals of motion for topologically ordered many-body localized systems [J].
Wahl, Thorsten B. ;
Beri, Benjamin .
PHYSICAL REVIEW RESEARCH, 2020, 2 (03)
[43]   Relativistic many-body theory: A new field-theoretical approach [J].
Fritzsche, S. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2012, 112 (14) :2688-2689
[44]   Path integral Monte Carlo for dissipative many-body systems [J].
Capriotti, L ;
Cuccoli, A ;
Fubini, A ;
Tognetti, V ;
Vaia, R .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2003, 237 (01) :23-38
[45]   Transition path sampling algorithm for discrete many-body systems [J].
Mora, Thierry ;
Walczak, Aleksandra M. ;
Zamponi, Francesco .
PHYSICAL REVIEW E, 2012, 85 (03)
[46]   Avalanches and many-body resonances in many-body localized systems [J].
Morningstar, Alan ;
Colmenarez, Luis ;
Khemani, Vedika ;
Luitz, David J. ;
Huse, David A. .
PHYSICAL REVIEW B, 2022, 105 (17)
[47]   Decoherence of many-body systems due to many-body interactions [J].
Carle, T. ;
Briegel, H. J. ;
Kraus, B. .
PHYSICAL REVIEW A, 2011, 84 (01)
[48]   RADIAL INTEGRALS FOR ATOMIC MANY-BODY PROBLEM [J].
ROBERTS, PJ .
JOURNAL OF CHEMICAL PHYSICS, 1968, 49 (07) :2954-&
[49]   Integrals of motion in the many-body localized phase [J].
Ros, V. ;
Mueller, M. ;
Scardicchio, A. .
NUCLEAR PHYSICS B, 2015, 891 :420-465
[50]   A MANY-BODY APPROACH TO HAMILTONIAN LATTICE GAUGE FIELD-THEORIES [J].
BISHOP, RF ;
XIAN, Y .
NUCLEAR PHYSICS B, 1994, :808-810