Meromorphic continuation of Selberg zeta functions with twists having non-expanding cusp monodromy

被引:10
作者
Fedosova, Ksenia [1 ]
Pohl, Anke [2 ]
机构
[1] Albert Ludwigs Univ Freiburg, Math Inst, Eckerstr 1, D-79104 Freiburg, Germany
[2] Univ Bremen, Dept Math 3, Bibliothekstr 5, D-28359 Bremen, Germany
来源
SELECTA MATHEMATICA-NEW SERIES | 2020年 / 26卷 / 01期
关键词
Selberg zeta function; Meromorphic continuation; Non-unitary representation; Non-expanding cusp monodromy; Thermodynamic formalism; Transfer operator; VALUED MODULAR-FORMS; HECKE TRIANGLE GROUPS; SYMBOLIC DYNAMICS; THERMODYNAMIC FORMALISM; RUELLE; SERIES;
D O I
10.1007/s00029-019-0534-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We initiate the study of Selberg zeta functions Z Gamma,chi for geometrically finite Fuchsian groups Gamma and finite-dimensional representations chi with non-expanding cusp monodromy. We show that for all choices of (Gamma,chi) , the Selberg zeta function Z Gamma,chi converges on some half-plane in C . In addition, under the assumption that Gamma admits a strict transfer operator approach, we show that Z Gamma,chi extends meromorphically to all of C.
引用
收藏
页数:55
相关论文
共 60 条
[1]  
[Anonymous], GRADUATE TEXTS MATH
[2]  
[Anonymous], ARXIV170303709
[3]  
[Anonymous], THESIS
[4]  
[Anonymous], MATH Z
[5]  
[Anonymous], RAMANUJAN J
[6]  
Artin E., 1924, Abh. Math. Sem. Univ. Hamburg, V3, P170, DOI [DOI 10.1007/BF02954622, 10.1007/BF02954622]
[7]   SYMBOLIC DYNAMICS FOR HYPERBOLIC FLOWS [J].
BOWEN, R .
AMERICAN JOURNAL OF MATHEMATICS, 1973, 95 (02) :429-459
[8]  
Bowen R., 1979, Publ. Math. IHES, V50, P153
[9]  
Chang CH, 2001, ERGODIC THEORY, ANALYSIS, AND EFFICIENT SIMULATION OF DYNAMICAL SYSTEMS, P523
[10]   EISENSTEIN SERIES WITH NON-UNITARY TWISTS [J].
Deitmar, Anton ;
Monheim, Frank .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (03) :507-530