Study of neutral-beam etching conditions for the fabrication of 7-nm-diameter nanocolumn structures using ferritin iron-core masks

被引:17
作者
Kubota, T
Baba, T
Kawashima, H
Uraoka, Y
Fuyuki, T
Yamashita, I
Samukawa, S
机构
[1] Tohoku Univ, Inst Fluid Sci, Aoba Ku, Sendai, Miyagi 9808577, Japan
[2] Nara Inst Sci & Technol, Grad Sch Mat Sci, Nara 6300192, Japan
[3] Matsushita Elect Ind Co Ltd, Japan Adv Technol Res Labs, Kyoto 6190237, Japan
[4] Nara Inst Sci & Technol, Grad Sch Mat Sci, Nara 6300192, Japan
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2005年 / 23卷 / 02期
关键词
D O I
10.1116/1.1880232
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We fabricated nanocolumn structure by using a low energy neutral beam and a ferritin iron-core mask. By using Cl-2 gas plasma for generating neutral beam, we obtained a better etching profile than with SF6 gas plasma. Though Cl-2: SF6 = 90: 10 enabled faster etching than Cl-2 gas without degrading the etching profile when the etching depth was,25 nm, a mixture with any quantity of SF6 gas resulted in a poor etching profile when the etching depth was 50 nm. The beam energy was optimized for the 50-mn depth using Cl-2 gas by changing the rf bias power to the bottom electrode of the neutral-beam source. Using the optimum beam energy, extremely high etching selectivity of the Si to ferritin iron-core masks (about 80) as well as highly anisotropic etching profile could be realized. As a result, the diameter of the top of the Si nanocolumn structure was 7 nm, which was identical to that of the iron core in the ferritin. Additionally, the etching profile was almost vertical. We were also able to achieve a high aspect ratio of about 4.6. It is very difficult for conventional plasma etching processes to fabricate such fine structure, because the high-energy photons enhanced the etching of the iron-core mask in the conventional plasma processes. 0 2005 American Vacuum Society.
引用
收藏
页码:534 / 539
页数:6
相关论文
共 22 条
[1]   Fabrication of ordered arrays of silicon nanopillars at selected sites [J].
Bale, M ;
Turner, AJ ;
Palmer, RE .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2002, 35 (05) :L11-L14
[2]   NATURAL LITHOGRAPHY [J].
DECKMAN, HW ;
DUNSMUIR, JH .
APPLIED PHYSICS LETTERS, 1982, 41 (04) :377-379
[3]   Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography [J].
Demers, LM ;
Ginger, DS ;
Park, SJ ;
Li, Z ;
Chung, SW ;
Mirkin, CA .
SCIENCE, 2002, 296 (5574) :1836-1838
[4]   Semiconductor nanostructures defined with self-organizing polymers [J].
Haupt, M ;
Miller, S ;
Ladenburger, A ;
Sauer, R ;
Thonke, K ;
Spatz, JP ;
Riethmüller, S ;
Möller, M ;
Banhart, F .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (09) :6057-6059
[5]   Facile fabrication of 2-dimensional arrays of sub-10 nm single crystalline Si nanopillars using nanoparticle masks [J].
Hong, YK ;
Bahng, JH ;
Lee, G ;
Kim, H ;
Kim, W ;
Lee, S ;
Koo, JY ;
Park, JI ;
Lee, W ;
Cheon, J .
CHEMICAL COMMUNICATIONS, 2003, (24) :3034-3035
[6]  
INOUE N, 2003, P 3 INT S DRY PROC I, P127
[7]   A 7-nm nanocolumn structure fabricated by using a ferritin iron-core mask and low-energy Cl neutral beams [J].
Kubota, T ;
Baba, T ;
Samukawa, S ;
Kawashima, H ;
Uraoka, Y ;
Fuyuki, T ;
Yamashita, I .
APPLIED PHYSICS LETTERS, 2004, 84 (09) :1555-1557
[8]   Fabrication of size-tunable large-area periodic silicon nanopillar arrays with sub-10-nm resolution [J].
Kuo, CW ;
Shiu, JY ;
Chen, PL ;
Somorjai, GA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (37) :9950-9953
[9]   Silicon nanopillars formed with gold colloidal particle masking [J].
Lewis, PA ;
Ahmed, H ;
Sato, T .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (06) :2938-2941
[10]  
Lewis R, 2001, PLAST ENG, V57, P58