A generalized integrability problem for G-structures

被引:2
作者
Santi, Andrea [1 ]
机构
[1] Univ Parma, Dipartimento Matemat & Informat, Parco Area Sci 53-A, I-43124 Parma, Italy
关键词
G-structures; Generalized integrability problem; Generalized; (G; (G)over-tilde)-curvatures; Generalized Spencer cohomology groups; GEOMETRY;
D O I
10.1007/s10231-015-0523-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an (n) over tilde -dimensional manifold (M) over tilde equipped with a (G) over tilde -structure (pi) over tilde : (P) over tilde -> (M) over tilde, there is a naturally induced G-structure pi : P -> M on any submanifold M subset of (M) over tilde that satisfies appropriate regularity conditions. We study generalized integrability problems for a given G-structure pi : P -> M, namely the questions of whether it is locally equivalent to induced G-structures on regular submanifolds of homogeneous (G) over tilde -structures (pi) over tilde : (P) over tilde -> (H) over tilde/(K) over tilde. If (pi) over tilde : (P) over tilde -> (H) over tilde/(K) over tilde is flat k-reductive, we introduce a sequence of generalized curvatures taking values in appropriate cohomology groups and prove that the vanishing of these curvatures is a necessary and sufficient condition for the solution of the corresponding generalized integrability problem.
引用
收藏
页码:1463 / 1489
页数:27
相关论文
共 22 条
[11]  
Kobayashi S., 1972, Transformation Groups in Differential Geometry
[12]   MULTIFOLIATE STRUCTURES [J].
KODAIRA, K ;
SPENCER, DC .
ANNALS OF MATHEMATICS, 1961, 74 (01) :52-&
[13]   Twistor theory for CR quaternionic manifolds and related structures [J].
Marchiafava, S. ;
Ornea, L. ;
Pantilie, R. .
MONATSHEFTE FUR MATHEMATIK, 2012, 167 (3-4) :531-545
[15]  
Ochiai T., 1970, T AM MATH SOC, V152, P159
[16]   GEOMETRY OF N=1 SUPERGRAVITY .2. [J].
ROSLY, AA ;
SCHWARZ, AS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 96 (03) :285-309
[17]  
SALAMON SM, 1986, ANN SCI ECOLE NORM S, V19, P31
[18]  
Santi A., GEN INTEGRABIL UNPUB
[19]  
Santi A., 2015, ARXIV13114072
[20]  
SINGER IM, 1965, J ANAL MATH, V15, DOI 10.1007/BF02787690