A generalized integrability problem for G-structures

被引:2
作者
Santi, Andrea [1 ]
机构
[1] Univ Parma, Dipartimento Matemat & Informat, Parco Area Sci 53-A, I-43124 Parma, Italy
关键词
G-structures; Generalized integrability problem; Generalized; (G; (G)over-tilde)-curvatures; Generalized Spencer cohomology groups; GEOMETRY;
D O I
10.1007/s10231-015-0523-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an (n) over tilde -dimensional manifold (M) over tilde equipped with a (G) over tilde -structure (pi) over tilde : (P) over tilde -> (M) over tilde, there is a naturally induced G-structure pi : P -> M on any submanifold M subset of (M) over tilde that satisfies appropriate regularity conditions. We study generalized integrability problems for a given G-structure pi : P -> M, namely the questions of whether it is locally equivalent to induced G-structures on regular submanifolds of homogeneous (G) over tilde -structures (pi) over tilde : (P) over tilde -> (H) over tilde/(K) over tilde. If (pi) over tilde : (P) over tilde -> (H) over tilde/(K) over tilde is flat k-reductive, we introduce a sequence of generalized curvatures taking values in appropriate cohomology groups and prove that the vanishing of these curvatures is a necessary and sufficient condition for the solution of the corresponding generalized integrability problem.
引用
收藏
页码:1463 / 1489
页数:27
相关论文
共 22 条
[1]  
Akivis M. A., 1999, CONFORMAL DIFFERENTI
[2]  
Akivis M. A., 1958, MAT SBORNIK, V53, P53
[3]  
Alekseevsky DV, 1996, ALGEBRA AND ANALYSIS, P1
[4]   Quaternionic structures on a manifold and subordinated structures. [J].
Alekseevsky, DV ;
Marchiafava, S .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1996, 171 :205-273
[5]  
Andreotti A., 1972, Ann. Scuola Norm. Pisa, V26, P299
[6]  
[Anonymous], 1963, FDN DIFFERENTIAL GEO
[7]  
Besse A.L, 2008, CLASSICS MATH
[8]   INTEGRABILITY PROBLEM FOR G-STRUCTURES [J].
GUILLEMIN, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 116 (04) :544-+
[9]  
Kantor I., 1966, T SEM VEKTOR TENZOR, V13, P310
[10]  
KOBAYASHI S, 1964, J MATH MECH, V13, P875