A generalized integrability problem for G-structures

被引:2
作者
Santi, Andrea [1 ]
机构
[1] Univ Parma, Dipartimento Matemat & Informat, Parco Area Sci 53-A, I-43124 Parma, Italy
关键词
G-structures; Generalized integrability problem; Generalized; (G; (G)over-tilde)-curvatures; Generalized Spencer cohomology groups; GEOMETRY;
D O I
10.1007/s10231-015-0523-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an (n) over tilde -dimensional manifold (M) over tilde equipped with a (G) over tilde -structure (pi) over tilde : (P) over tilde -> (M) over tilde, there is a naturally induced G-structure pi : P -> M on any submanifold M subset of (M) over tilde that satisfies appropriate regularity conditions. We study generalized integrability problems for a given G-structure pi : P -> M, namely the questions of whether it is locally equivalent to induced G-structures on regular submanifolds of homogeneous (G) over tilde -structures (pi) over tilde : (P) over tilde -> (H) over tilde/(K) over tilde. If (pi) over tilde : (P) over tilde -> (H) over tilde/(K) over tilde is flat k-reductive, we introduce a sequence of generalized curvatures taking values in appropriate cohomology groups and prove that the vanishing of these curvatures is a necessary and sufficient condition for the solution of the corresponding generalized integrability problem.
引用
收藏
页码:1463 / 1489
页数:27
相关论文
共 22 条
  • [1] Akivis M. A., 1999, CONFORMAL DIFFERENTI
  • [2] Akivis M. A., 1958, MAT SBORNIK, V53, P53
  • [3] Alekseevsky DV, 1996, ALGEBRA AND ANALYSIS, P1
  • [4] Quaternionic structures on a manifold and subordinated structures.
    Alekseevsky, DV
    Marchiafava, S
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1996, 171 : 205 - 273
  • [5] Andreotti A., 1972, Ann. Scuola Norm. Pisa, V26, P299
  • [6] [Anonymous], 1963, FDN DIFFERENTIAL GEO
  • [7] Besse A.L, 2008, CLASSICS MATH
  • [8] INTEGRABILITY PROBLEM FOR G-STRUCTURES
    GUILLEMIN, V
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 116 (04) : 544 - +
  • [9] Kantor I., 1966, T SEM VEKTOR TENZOR, V13, P310
  • [10] KOBAYASHI S, 1964, J MATH MECH, V13, P875