Differentiating Surface Ce Species among CeO2 Facets by Solid-State NMR for Catalytic Correlation

被引:81
作者
Tan, Zicong [4 ]
Li, Guangchao [2 ,3 ,5 ]
Chou, Hung-Lung [1 ]
Li, Yiyang [6 ]
Yi, Xianfeng [2 ,3 ]
Mahadi, Abdul Hanif [7 ]
Zheng, Anmin [2 ,3 ]
Tsang, Shik Chi Edman [6 ]
Peng, Yung-Kang [4 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Grad Inst Appl Sci & Technol, Taipei 10617, Taiwan
[2] Chinese Acad Sci, Natl Ctr Magnet Resonance Wuhan, Wuhan Inst Phys & Math,Key Lab Magnet Resonance B, State Key Lab Magnet Resonance & Atom & Mol Phys, Wuhan 430071, Peoples R China
[3] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450052, Henan, Peoples R China
[4] City Univ Hong Kong, Dept Chem, Hong Kong 999077, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[6] Univ Oxford, Wolfson Catalysis Ctr, Dept Chem, Oxford OX1 3QR, England
[7] Univ Brunei Darussalam, Ctr Adv Mat & Energy Sci, Gadong 1410, Brunei
基金
中国国家自然科学基金;
关键词
ceria nanocrystals; facet-dependent surface chemistry; chemical state of surface atom; probe-assisted NMR; nanozyme; CERIA; NANORODS; NANOPARTICLES; OXIDATION;
D O I
10.1021/acscatal.0c00014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Altering the exposed facet of CeO2 nanocrystallites and hence the control of surface chemistry on the nano level have been shown to significantly change their performances in various catalytic reactions. The chemical state of surface Ce, which is associated with Lewis acidity and hence the adsorption/activation energy of reactants on the surface, is expected to vary with their hosted facets. Unfortunately, traditional surface tools fail to differentiate/quantify them among hosted facets and thus have led to different interpretations among researchers in the past decades. Herein, probe-assisted nuclear magnetic resonance is employed for the surface investigation of different CeO2 facets. They not only allow differentiation of the surface Ce atoms between hosted facets at high resolution but can also provide their corresponding concentrations. The as-established facet fingerprint of CeO2 can thus report on the facet distribution/concentration of a given CeO2 sample. Dephosphorylation and H2O2 reduction were tested as probe reactions to demonstrate the importance of obtaining comprehensive surface Ce information for the active site identification and the rational design of CeO2-based catalysts. Around 1000 and 4500% increase in activity of those reactions can be easily achieved on pristine CeO2 without further surface engineering when its terminal facet is wisely chosen. Our results thus imply that the basic surface knowledge of even a simple catalyst can be more important than the continuous development of their fancy derivatives without clear guidance.
引用
收藏
页码:4003 / 4011
页数:9
相关论文
共 40 条
[1]   Exposed Surfaces on Shape-Controlled Ceria Nanoparticles Revealed through AC-TEM and Water-Gas Shift Reactivity [J].
Agarwal, Shilpa ;
Lefferts, Leon ;
Mojet, Barbara L. ;
Ligthart, D. A. J. Michel ;
Hensen, Emiel J. M. ;
Mitchell, David R. G. ;
Erasmus, Willem J. ;
Anderson, Bruce G. ;
Olivier, Ezra J. ;
Neethling, Johannes H. ;
Datye, Abhaya K. .
CHEMSUSCHEM, 2013, 6 (10) :1898-1906
[2]   The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration [J].
Baldim, V. ;
Bedioui, F. ;
Mignet, N. ;
Margaill, I. ;
Berret, J. -F. .
NANOSCALE, 2018, 10 (15) :6971-6980
[3]   Controlling the {111}/{110} Surface Ratio of Cuboidal Ceria Nanoparticles [J].
Castanet, Uli ;
Feral-Martin, Cedric ;
Demourgues, Alain ;
Neale, Rachel L. ;
Sayle, Dean C. ;
Caddeo, Francesco ;
Flitcroft, Joseph M. ;
Caygill, Robert ;
Pointon, Ben J. ;
Molinari, Marco ;
Majimel, Jerome .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (12) :11384-11390
[4]   Polar surface structure of oxide nanocrystals revealed with solid-state NMR spectroscopy [J].
Chen, Junchao ;
Wu, Xin-Ping ;
Hope, Michael A. ;
Qian, Kun ;
Halat, David M. ;
Liu, Tao ;
Li, Yuhong ;
Shen, Li ;
Ke, Xiaokang ;
Wen, Yujie ;
Du, Jia-Huan ;
Magusin, Pieter C. M. M. ;
Paul, Subhradip ;
Ding, Weiping ;
Gong, Xue-Qing ;
Grey, Clare P. ;
Peng, Luming .
NATURE COMMUNICATIONS, 2019, 10 (1)
[5]   Three-Dimensional Tomographic Analyses of CeO2 Nanoparticles [J].
Florea, Ileana ;
Feral-Martin, Cedric ;
Majimel, Jerome ;
Ihiawakrim, Dris ;
Hirlimann, Charles ;
Ersen, Ovidiu .
CRYSTAL GROWTH & DESIGN, 2013, 13 (03) :1110-1121
[6]   Three-Dimensional Valency Mapping in Ceria Nanocrystals [J].
Goris, Bart ;
Turner, Stuart ;
Bals, Sara ;
Van Tendeloo, Gustaaf .
ACS NANO, 2014, 8 (10) :10878-10884
[7]   Reactivity of ceria-zirconia catalysts for the catalytic wet peroxidative oxidation of azo dyes: reactivity and quantification of surface Ce(IV)-peroxo species [J].
Hamoud, Houeida Issa ;
Azambre, Bruno ;
Finqueneisel, Gisele .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2016, 91 (09) :2462-2473
[8]   Electrochemical activity of the polycrystalline cerium oxide films for hydrogen peroxide detection [J].
Kosto, Yuliia ;
Zanut, Alessandra ;
Franchi, Stefano ;
Yakovlev, Yurii ;
Khalakhan, Ivan ;
Matolin, Vladimir ;
Prince, Kevin Charles ;
Valenti, Giovanni ;
Paolucci, Francesco ;
Tsud, Nataliya .
APPLIED SURFACE SCIENCE, 2019, 488 :351-359
[9]   Regulating the surface of nanoceria and its applications in heterogeneous catalysis [J].
Ma, Yuanyuan ;
Gao, Wei ;
Zhang, Zhiyun ;
Zhang, Sai ;
Tian, Zhimin ;
Liu, Yuxuan ;
Ho, Johnny C. ;
Qu, Yongquan .
SURFACE SCIENCE REPORTS, 2018, 73 (01) :1-36
[10]   Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes [J].
Mai, HX ;
Sun, LD ;
Zhang, YW ;
Si, R ;
Feng, W ;
Zhang, HP ;
Liu, HC ;
Yan, CH .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (51) :24380-24385