Spin-orbit coupling and interactions in quantum Hall states of graphene/WSe2 heterobilayers

被引:3
作者
Wang, Dongying [1 ]
Karaki, Mohammed [1 ]
Mazzucca, Nicholas [1 ]
Tian, Haidong [1 ]
Cao, Guixin [1 ]
Lau, ChunNing [1 ]
Lu, Yuan-Ming [1 ]
Bockrath, Marc [1 ]
Watanabe, Kenji [2 ]
Taniguchi, Takashi [3 ]
机构
[1] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA
[2] Natl Inst Mat Sci, Res Ctr Funct Mat, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[3] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
关键词
TRANSITION; PHASE;
D O I
10.1103/PhysRevB.104.L201301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We use magnetotransport measurements to probe quantum Hall ground states in graphene/WSe2 heterobi-layers. Compared to pristine graphene, inter-Landau level (LL) gaps at half-filled quartets away from filling factor nu = 0 show significantly weaker dependence on the magnetic field B, while odd nu fillings show a stronger dependence. We interpret this behavior using a model incorporating Ising and Rashba spin-orbit coupling (SOC) along with Coulomb interactions within the self-consistent Hartree-Fock framework. A model fit yields Ising SOC in range similar to 1-2 meV, Rashba -10 meV, and the in-plane dielectric constant similar to 12, in agreement to previously found values. In the zeroth LL quartet, the nu = 0 gap as a function of magnetic field exhibits a plateau near 5 T, compared to similar to 20-25 T for pristine graphene. This behavior is in agreement with a model in which the SOC causes a phase transition from a canted antiferromagnetic state to a ferromagnetic state to occur at a much lower field. Our studies demonstrate how the interplay of SOC and electronic interactions affect graphene's electronic structure.
引用
收藏
页数:5
相关论文
共 47 条
[1]   Fractional and integer quantum Hall effects in the zeroth Landau level in graphene [J].
Abanin, Dmitry A. ;
Feldman, Benjamin E. ;
Yacoby, Amir ;
Halperin, Bertrand I. .
PHYSICAL REVIEW B, 2013, 88 (11)
[2]   Interplay between lattice-scale physics and the quantum Hall effect in graphene [J].
Alicea, Jason ;
Fisher, Matthew P. A. .
SOLID STATE COMMUNICATIONS, 2007, 143 (11-12) :504-509
[3]   Strongly anisotropic spin relaxation in graphene-transition metal dichalcogenide heterostructures at room temperature [J].
Antonio Benitez, L. ;
Sierra, Juan F. ;
Savero Torres, Williams ;
Arrighi, Alois ;
Bonell, Frederic ;
Costache, Marius V. ;
Valenzuela, Sergio O. .
NATURE PHYSICS, 2018, 14 (03) :303-+
[4]   Symmetry-breaking effects on spin and electronic transport in graphene [J].
Asmar, Mahmoud M. ;
Ulloa, Sergio E. .
PHYSICAL REVIEW B, 2015, 91 (16)
[5]   Spin-orbit proximity effect in graphene [J].
Avsar, A. ;
Tan, J. Y. ;
Taychatanapat, T. ;
Balakrishnan, J. ;
Koon, G. K. W. ;
Yeo, Y. ;
Lahiri, J. ;
Carvalho, A. ;
Rodin, A. S. ;
O'Farrell, E. C. T. ;
Eda, G. ;
Castro Neto, A. H. ;
Oezyilmaz, B. .
NATURE COMMUNICATIONS, 2014, 5
[6]   Colossal enhancement of spin-orbit coupling in weakly hydrogenated graphene [J].
Balakrishnan, Jayakumar ;
Koon, Gavin Kok Wai ;
Jaiswal, Manu ;
Castro Neto, A. H. ;
Oezyilmaz, Barbaros .
NATURE PHYSICS, 2013, 9 (05) :284-287
[7]   First-principles calculation of the spin-orbit splitting in graphene [J].
Boettger, J. C. ;
Trickey, S. B. .
PHYSICAL REVIEW B, 2007, 75 (12)
[8]   Lifting of the Landau level degeneracy in graphene devices in a tilted magnetic field [J].
Chiappini, F. ;
Wiedmann, S. ;
Novoselov, K. ;
Mishchenko, A. ;
Geim, A. K. ;
Maan, J. C. ;
Zeitler, U. .
PHYSICAL REVIEW B, 2015, 92 (20)
[9]   Landau levels, edge states, and strained magnetic waveguides in graphene monolayers with enhanced spin-orbit interaction [J].
De Martino, Alessandro ;
Huetten, Artur ;
Egger, Reinhold .
PHYSICAL REVIEW B, 2011, 84 (15)
[10]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726