Jacquet modules and Dirac cohomology

被引:10
作者
Dong, Chao-Ping [1 ]
Huang, Jing-Song [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
Jacquet functor; Harish-Chandra module; Generalized Verma module; Dirac cohomology; Principal series; HARISH-CHANDRA MODULES; EULER NUMBER MULTIPLETS; REPRESENTATIONS; ASYMPTOTICS; SUBGROUPS; HOMOLOGY;
D O I
10.1016/j.aim.2010.09.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that Dirac cohomology of the Jacquet module of a Harish-Chandra module is a Harish-Chandra module for the corresponding Levi subgroup. We obtain an explicit formula of Dirac cohomology of the Jacquet module for most of the principal series, based on our determination of Dirac cohomology of irreducible generalized Verma modules with regular infinitesimal characters. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2911 / 2934
页数:24
相关论文
共 26 条
[2]  
[Anonymous], 1978, PROC INT C MATH
[3]  
[Anonymous], 1995, PRINCETON MATH SERIE, DOI DOI 10.1515/9781400883936
[4]  
Bernshtein I.N., 1971, Funct. Anal. Appl., V5, P89
[5]  
Bourbaki N., 2002, Elements of Mathematics, P4, DOI DOI 10.1007/978-3-540-89394-3
[6]  
CASSELMAN W, 1975, COMPOS MATH, V31, P219
[7]  
ENRIGHT TJ, 1988, J REINE ANGEW MATH, V392, P27
[8]   CHARACTERS, ASYMPTOTICS AND ALEPH-HOMOLOGY OF HARISH-CHANDRA MODULES [J].
HECHT, H ;
SCHMID, W .
ACTA MATHEMATICA, 1983, 151 (1-2) :49-151
[9]  
HECHT H, 1983, J REINE ANGEW MATH, V343, P169
[10]  
Huang J. -S, 2006, MATH THEORY APPL BIR