Novel Combinational Aerodisk and Lateral Jet Concept for Drag and Heat Reduction in Hypersonic Flows

被引:16
|
作者
Zhu, Liang [1 ]
Li, Yingkun [1 ]
Chen, Xiong [1 ]
Gong, Lunkun [2 ]
Xu, Jinsheng [1 ]
Feng, Zirui [3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Xian Modern Chem Res Inst, Special Power Res Dept, Xian 710065, Shaanxi, Peoples R China
[3] Xian North Huian Chem Ind Co Ltd, 305 South St, Xian 710065, Shaanxi, Peoples R China
关键词
Fluid-thermal interaction; Hypersonic flow; Lateral jet; Drag reduction; Thermal protection; THERMAL PROTECTION SYSTEM; FORWARD-FACING CAVITY; SPIKED BLUNT BODIES; MACH NUMBER FLOW; SUPERSONIC FLOWS; OPPOSING JET; COUNTERFLOWING JET; BODY; MECHANISM; VEHICLES;
D O I
10.1061/(ASCE)AS.1943-5525.0000966
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Hypersonic vehicles have attracted lasting and worldwide attention in recent years. Considerable aerodynamic drag and severe aerothermal loads are major challenges for hypersonic vehicles. A novel combinational aerodisk and lateral jet concept is proposed for drag reduction and thermal protection in hypersonic flows. The flow field characteristics have been numerically investigated with in-house code. The Reynolds-averaged Navier-Stokes (RANS) equations were adopted to simulate the flow field, and the shear stress transport (SST) k- turbulence model was used to present the turbulent nature. Fluid-thermal interaction is also taken into consideration in this paper. The influences of the lateral jet pressure ratio and its location on the flow field have been thoroughly studied using numerical methods. The obtained results demonstrate that the novel concept is beneficial for drag reduction and thermal protection in hypersonic flows. Increasing the lateral jet pressure ratio can further improve drag reduction performance. In addition, the heat flux can be significantly reduced by increasing the lateral jet pressure ratio. The lateral jet location also has important effects on the flow properties. The peak values of the Stanton number and wall static pressure can even be reduced by 19.76% and 22.15%, respectively, with different lateral jet locations.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Multiobjective Design Optimization of Hypersonic Combinational Novel Cavity and Opposing Jet Concept
    Sun, Xi-wan
    Huang, Wei
    Guo, Zhen-yun
    Yan, Li
    JOURNAL OF SPACECRAFT AND ROCKETS, 2017, 54 (03) : 662 - 671
  • [22] DRAG AND HEAT REDUCTION MECHANISM OF THE POROUS OPPOSING JET FOR VARIABLE BLUNT HYPERSONIC VEHICLES
    Li, Shibin
    Huang, Wei
    Wang, Zhenguo
    Yan, Li
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2018, VOL 5B, 2018,
  • [23] Establishment process of spiked lateral jet in hypersonic flows
    Zhu, Liang
    Li, Wei-xuan
    Tian, Xiao-tao
    Song, Jun
    Hu, Bo-wen
    AEROSPACE SCIENCE AND TECHNOLOGY, 2022, 124
  • [24] Investigation on thermal protection and drag reduction by lateral jet in supersonic flows
    Zhu Liang
    Chen Xiong
    Li Ying-kun
    Yan Deng-chao
    PROCEEDINGS OF THE6TH INTERNATIONAL CONFERENCE ON MECHATRONICS, MATERIALS, BIOTECHNOLOGY AND ENVIRONMENT (ICMMBE 2016), 2016, 83 : 642 - 647
  • [25] Simulations of Heat and Drag Reduction of Opposing Jet in Hypersonic Flow
    Wu, Qian
    Huang, Haiming
    Zhao, Yipu
    Yao, Jun
    Bai, Jiajing
    Zheng, Jinglai
    JOURNAL OF SPACECRAFT AND ROCKETS, 2023, 60 (05) : 1574 - 1584
  • [26] Study on the drag and heat reduction performance of porous opposing jet in hypersonic flow
    Fan, Wei-jie
    Li, Shi-bin
    Zhou, Jin
    Huang, Wei
    Ou, Min
    Zhang, Rui-rui
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 139 : 351 - 361
  • [27] Fluid-thermal coupled analysis of heat reduction by the opposing jet in hypersonic flows
    Liu, Hongpeng
    Wang, Zhenguo
    Ding, Meng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 147
  • [28] Heat and drag reduction of single and combined opposing jets in hypersonic nonequilibrium flows
    Zhang, Wenqing
    Wang, Xiaowei
    Zhang, Zhijun
    Han, Feng
    Zhao, Shuangshuang
    AEROSPACE SCIENCE AND TECHNOLOGY, 2022, 121
  • [29] A survey on numerical simulations of drag and heat reduction mechanism in supersonic/hypersonic flows
    Sun, Xiwan
    Huang, Wei
    Ou, Min
    Zhang, Ruirui
    Li, Shibin
    CHINESE JOURNAL OF AERONAUTICS, 2019, 32 (04) : 771 - 784
  • [30] Geometric Optimization of Blunt Bodies with Aerodisk and Opposing Jet for Wave Drag and Heat Reduction
    Hamza, Muhammad
    Khan, Saima Bukhat
    Maqsood, Adnan
    AEROSPACE, 2022, 9 (12)