EMCM: A Novel Binary Edge-Feature-Based Maximum Clique Framework for Multispectral Image Matching

被引:4
作者
Fang, Bin [1 ,2 ]
Yu, Kun [1 ,2 ]
Ma, Jie [1 ,2 ,3 ]
An, Pei [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Natl Key Lab Sci & Technol Multispectral Informat, Wuhan 430074, Peoples R China
[3] Sci & Technol Complex Syst Control & Intelligent, Beijing 100074, Peoples R China
关键词
multispectral image matching; strong edge; binary edge feature; distinctiveness analysis; maximum clique; GAUSSIAN MIXTURE MODEL; INFRARED FACE REGISTRATION; OBJECT RECOGNITION;
D O I
10.3390/rs11243026
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Seeking reliable correspondence between multispectral images is a fundamental and important task in computer vision. To overcome the nonlinearity problem occurring in multispectral image matching, a novel, edge-feature-based maximum clique-matching frame (EMCM) is proposed, which contains three main parts: (1) a novel strong edge binary feature descriptor, (2) a new correspondence-ranking algorithm based on keypoint distinctiveness analysis algorithms in the feature space of the graph, and (3) a false match removal algorithm based on maximum clique searching in the correspondence space of the graph considering both position and angle consistency. Extensive experiments are conducted on two standard multispectral image datasets with respect to the three parts. The feature-matching experiments suggest that the proposed feature descriptor is of high descriptiveness, robustness, and efficiency. The correspondence-ranking experiments validate the superiority of our correspondences-ranking algorithm over the nearest neighbor algorithm, and the coarse registration experiments show the robustness of EMCM with varied interferences.
引用
收藏
页数:30
相关论文
共 46 条
[1]   Multispectral Image Feature Points [J].
Aguilera, Cristhian ;
Barrera, Fernando ;
Lumbreras, Felipe ;
Sappa, Angel D. ;
Toledo, Ricardo .
SENSORS, 2012, 12 (09) :12661-12672
[2]  
Aguilera CA, 2015, IEEE IMAGE PROC, P178, DOI 10.1109/ICIP.2015.7350783
[3]   Tutorial Point Cloud Library Three-Dimensional Object Recognition and 6 DOF Pose Estimation [J].
Aldoma, Aitor ;
Marton, Zoltan-Csaba ;
Tombari, Federico ;
Wohlkinger, Walter ;
Potthast, Christian ;
Zeisl, Bernhard ;
Rusu, Radu Bogdan ;
Gedikli, Suat ;
Vincze, Markus .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2012, 19 (03) :80-91
[4]   Cerebrovascular network registration via an efficient attributed graph matching technique [J].
Almasi, Sepideh ;
Lauric, Alexandra ;
Malek, Adel ;
Miller, Eric L. .
MEDICAL IMAGE ANALYSIS, 2018, 46 :118-129
[5]  
[Anonymous], POTSD DAT REM SENS I
[6]   Speeded-Up Robust Features (SURF) [J].
Bay, Herbert ;
Ess, Andreas ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (03) :346-359
[7]  
Bracewell R. N., 1986, FOURIER TRANSFORM IT
[8]  
Brown M, 2011, PROC CVPR IEEE, P177, DOI 10.1109/CVPR.2011.5995637
[9]  
Bustos a.P., 2019, P CVPR 2019 PROGR CH
[10]   3D free-form object recognition in range images using local surface patches [J].
Chen, Hui ;
Bhanu, Bir .
PATTERN RECOGNITION LETTERS, 2007, 28 (10) :1252-1262