Low temperature deposited (Ce,Gd)O2-x interlayer for La0.6Sr0.4Co0.2Fe0.8O3 cathode based solid oxide fuel cell

被引:24
|
作者
Gong, Yunhui [1 ,2 ]
Ji, Weijie [1 ,2 ]
Zhang, Lei [1 ,2 ]
Li, Ming [1 ,2 ]
Xie, Bin [1 ,2 ]
Wang, Haiqian [1 ,2 ]
Jiang, Yousong [3 ]
Song, Yizhou [3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, USTC Shincron Joint Lab, Hefei 230026, Anhui, Peoples R China
[3] Shincron Co Ltd, Nishi Ku, Yokohama, Kanagawa, Japan
基金
中国国家自然科学基金;
关键词
Yttria-stabilized zirconia; Lanthanum strontium cobalt ferrite; Gadolinia-doped ceria; Screen printing; Electron beam evaporation; Ion assisted deposition; FERRITE-BASED PEROVSKITES; DOPED CERIA; INTERFACES; TECHNOLOGIES; FABRICATION; LAYERS; GD;
D O I
10.1016/j.jpowsour.2010.10.070
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Application of La0.6Sr0.4Co0.2Fe0.8O3 perovskites cathode in solid oxide fuel cell (SOFC) can benefit from its high electrocatalytic activity at 600-800 degrees C. However, due to the chemical and mechanical incompatibility between the LSCF cathode and state-of-the-art yttria stabilized zirconia (YSZ) electrolyte, a ceria-based oxide barrier interlayer is usually introduced. In this work, gadolinia doped ceria (GDC) interlayers are prepared by screen printing (SP), electron beam evaporation (EB) and ion assisted deposition (IAD) methods. The microstructures of the GDC interlayers show great dependence on the deposition methods. The 1250 degrees C-sintered SP interlayer exhibits a porous microstructure. The EB method generates a thin and compact interlayer at a low substrate temperature of 250 degrees C. With the help of additional energetic argon and oxygen ions bombardment on the deposited species, the IAD method yields the densest GDC interlayer at the same substrate temperature, which leads to the best electrochemical performance of LSFC-based SOFC. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2768 / 2772
页数:5
相关论文
共 50 条
  • [1] Ce0.8Gd0.2O2 modification on La0.6Sr0.4Co0.2Fe0.8O3 cathode for improving a cell performance in intermediate temperature solid oxide fuel cells
    Yun, Jeong Woo
    Han, Jonghee
    Yoon, Sung Pil
    Park, Sanggyun
    Kim, Hee Su
    Nam, Suk Woo
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2011, 17 (03) : 439 - 444
  • [2] La0.6Sr0.4Co0.2Fe0.8O3 as the anode and cathode for intermediate temperature solid oxide fuel cells
    Hartley, A
    Sahibzada, M
    Weston, M
    Metcalfe, IS
    Mantzavinos, D
    CATALYSIS TODAY, 2000, 55 (1-2) : 197 - 204
  • [3] Extended reaction zone of La0.6Sr0.4Co0.2Fe0.8O3 cathode for solid oxide fuel cell
    Lu, Zigui
    Hardy, John
    Templeton, Jared
    Stevenson, Jeffry
    JOURNAL OF POWER SOURCES, 2012, 198 : 90 - 94
  • [4] Pr Doped Ceria and La0.6Sr0.4Co0.2Fe0.8O3 Composite Cathode for Solid Oxide Fuel Cell
    Chen, M. J.
    Cheng, S.
    SOLID OXIDE FUEL CELLS 12 (SOFC XII), 2011, 35 (01): : 2175 - 2182
  • [5] Effect of sintering temperature on the performance of composite La0.6Sr0.4Co0.2Fe0.8O3–Ce0.9Gd0.1O2 cathode for solid oxide fuel cells
    A. A. Solovyev
    I. V. Ionov
    A. V. Shipilova
    P. D. Maloney
    Journal of Electroceramics, 2018, 40 : 150 - 155
  • [6] Mechanism of La0.6Sr0.4Co0.2Fe0.8O3 cathode degradation
    Oh, Dongjo
    Gostovic, Danijel
    Wachsman, Eric D.
    JOURNAL OF MATERIALS RESEARCH, 2012, 27 (15) : 1992 - 1999
  • [7] Magnetron-sputtered La0.6Sr0.4Co0.2Fe0.8O3 nanocomposite interlayer for solid oxide fuel cells
    A. A. Solovyev
    I. V. Ionov
    A. V. Shipilova
    A. N. Kovalchuk
    M. S. Syrtanov
    Journal of Nanoparticle Research, 2017, 19
  • [8] La0.6Sr0.4Co0.2Fe0.8O3 protective coatings for solid oxide fuel cell interconnect deposited by screen printing
    Tsai, Ming-Jui
    Chu, Chun-Lin
    Lee, Shyong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 489 (02) : 576 - 581
  • [9] Preparation of La0.6Sr0.4Co0.2Fe0.8O3 nanoceramic cathode powders for solid oxide fuel cell (SOFC) application
    Ghouse, M.
    Al-Yousef, Y.
    Al-Musa, A.
    Al-Otaibi, M. F.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (17) : 9411 - 9419
  • [10] Magnetron-sputtered La0.6Sr0.4Co0.2Fe0.8O3 nanocomposite interlayer for solid oxide fuel cells
    Solovyev, A. A.
    Ionov, I. V.
    Shipilova, A. V.
    Kovalchuk, A. N.
    Syrtanov, M. S.
    JOURNAL OF NANOPARTICLE RESEARCH, 2017, 19 (03)