Nucleic acid recognition by OB-fold proteins

被引:396
作者
Theobald, DL [1 ]
Mitton-Fry, RM [1 ]
Wuttke, DS [1 ]
机构
[1] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
来源
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE | 2003年 / 32卷
关键词
single stranded; protein fold; structural alignment;
D O I
10.1146/annurev.biophys.32.110601.142506
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The OB-fold domain is a compact structural motif frequently used for nucleic acid recognition. Structural comparison of all OB-fold/nucleic acid complexes solved to date confirms the low degree of sequence similarity among members of this family while highlighting several structural sequence determinants common to most of these OB-folds. Loops connecting the secondary structural elements in the OB-fold core are extremely variable in length and in functional detail. However, certain features of ligand binding are conserved among OB-fold complexes, including the location of the binding surface, the polarity of the nucleic acid with respect to the OB-fold, and particular nucleic acid-protein interactions commonly used for recognition of single-stranded and unusually structured nucleic acids. Intriguingly, the observation of shared nucleic acid polarity may shed light on the longstanding question concerning OB-fold origins, indicating that it is unlikely that members of this family arose vi a convergent evolution.
引用
收藏
页码:115 / 133
页数:27
相关论文
共 80 条
[1]   Crystal structure of the RNA-binding domain from transcription termination factor rho [J].
Allison, TJ ;
Wood, TC ;
Briercheck, DM ;
Rastinejad, F ;
Richardson, JP ;
Rule, GS .
NATURE STRUCTURAL BIOLOGY, 1998, 5 (05) :352-356
[2]  
ANDERSON EM, 2002, IN PRESS BIOCHEMISTR, V42
[3]  
Anderson R, 2002, NETW COMPUT, V13, P30
[4]   Single stranded RNA binding proteins [J].
Antson, AA .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2000, 10 (01) :87-94
[5]   The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution [J].
Ban, N ;
Nissen, P ;
Hansen, J ;
Moore, PB ;
Steitz, TA .
SCIENCE, 2000, 289 (5481) :905-920
[6]   Functional analysis of the four DNA binding domains of replication protein A - The role of RPA2 in ssDNA binding [J].
Bastin-Shanower, SA ;
Brill, SJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (39) :36446-36453
[7]   The eIF1A solution structure reveals a large RNA-binding surface important for scanning function [J].
Battiste, JL ;
Pestova, TV ;
Hellen, CUT ;
Wagner, G .
MOLECULAR CELL, 2000, 5 (01) :109-119
[8]   The crystal structure of asparaginyl-tRNA synthetase from Thermus thermophilus and its complexes with ATP and asparaginyl-adenylate:: the mechanism of discrimination between asparagine and aspartic acid [J].
Berthet-Colominas, C ;
Seignovert, L ;
Härtlein, M ;
Grotli, M ;
Cusack, S ;
Leberman, R .
EMBO JOURNAL, 1998, 17 (10) :2947-2960
[9]   Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA [J].
Bochkarev, A ;
Pfuetzner, RA ;
Edwards, AM ;
Frappier, L .
NATURE, 1997, 385 (6612) :176-181
[10]   The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding [J].
Bochkarev, A ;
Bochkareva, E ;
Frappier, L ;
Edwards, AM .
EMBO JOURNAL, 1999, 18 (16) :4498-4504