Collective field description of spin Calogero-Sutherland models

被引:14
作者
Awata, H
Matsuo, Y
Yamamoto, T
机构
[1] Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 12期
关键词
D O I
10.1088/0305-4470/29/12/016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the collective field technique, we give the description of the spin Calogero-Sutherland model (CSM) in terms of free bosons. This approach can be applicable for arbitrary coupling constant and provides the bosonized Hamiltonian of the spin CSM. The boson Fock space can be identified with the Hilbert space of the spin CSM in the large-N limit. We show that the eigenstates corresponding to the Young diagram with a single row or column are represented by the vertex operators. We also derive a dual description of the Hamiltonian and comment on the construction of the general eigenstates.
引用
收藏
页码:3089 / 3098
页数:10
相关论文
共 40 条
[1]  
AHN C, 1995, SNUTP9
[2]   COLLECTIVE FIELD-THEORY, CALOGERO-SUTHERLAND MODEL AND GENERALIZED MATRIX MODELS [J].
AWATA, H ;
MATSUO, Y ;
ODAKE, S ;
SHIRAISHI, J .
PHYSICS LETTERS B, 1995, 347 (1-2) :49-55
[3]   EXCITED-STATES OF THE CALOGERO-SUTHERLAND MODEL AND SINGULAR VECTORS OF THE W-N ALGEBRA [J].
AWATA, H ;
MATSUO, Y ;
ODAKE, S ;
SHIRAISHI, J .
NUCLEAR PHYSICS B, 1995, 449 (1-2) :347-374
[4]   SPINONS IN CONFORMAL FIELD-THEORY [J].
BERNARD, D ;
PASQUIER, V ;
SERBAN, D .
NUCLEAR PHYSICS B, 1994, 428 (03) :612-628
[5]   YANG-BAXTER EQUATION IN LONG-RANGE INTERACTING SYSTEMS [J].
BERNARD, D ;
GAUDIN, M ;
HALDANE, FDM ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (20) :5219-5236
[6]  
BERNARD D, 1995, NEW DEV INTEGRABLE S
[7]   SPINON BASES, YANGIAN SYMMETRY AND FERMIONIC REPRESENTATIONS OF VIRASORO CHARACTERS IN CONFORMAL FIELD-THEORY [J].
BOUWKNEGT, P ;
LUDWIG, AWW ;
SCHOUTENS, K .
PHYSICS LETTERS B, 1994, 338 (04) :448-456
[8]   GROUND STATE OF A ONE-DIMENSIONAL N-BODY SYSTEM [J].
CALOGERO, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (12) :2197-&
[9]   INTEGRATION OF QUANTUM MANY-BODY PROBLEMS BY AFFINE KNIZHNIK-ZAMOLODCHIKOV EQUATIONS [J].
CHEREDNIK, I .
ADVANCES IN MATHEMATICS, 1994, 106 (01) :65-95