Maximum-size antichains in random set-systems

被引:10
作者
Collares, Mauricio [1 ]
Morris, Robert [1 ]
机构
[1] IMPA, Estr Dona Castorina 110, Rio De Janeiro, RJ, Brazil
关键词
Hypergraph containers; antichains; random set-systems; RANDOM SUBSETS;
D O I
10.1002/rsa.20647
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We show that, for pn, the largest set in a p-random sub-family of the power set of {1,...,n} containing no k-chain has size (k-1+o(1))p() with high probability. This confirms a conjecture of Osthus. (c) 2016 Wiley Periodicals, Inc. Random Struct. Alg., 49, 308-321, 2016
引用
收藏
页码:308 / 321
页数:14
相关论文
共 21 条
[1]  
[Anonymous], 1963, Teor. Verojatnost. i Primenen
[2]  
Balogh J, 2015, J AM MATH SOC, V28, P669
[3]   A random version of Spemer's theorem [J].
Balogh, Jozsef ;
Mycroft, Richard ;
Treglown, Andrew .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 128 :104-110
[4]   ON GENERALIZED GRAPHS [J].
BOLLOBAS, B .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1965, 16 (3-4) :447-&
[5]  
Conlon andW D., ANN MATH IN PRESS
[6]   Sperner's Theorem and a Problem of Erdos, Katona and Kleitman [J].
Das, Shagnik ;
Gan, Wenying ;
Sudakov, Benny .
COMBINATORICS PROBABILITY & COMPUTING, 2015, 24 (04) :585-608
[7]   ON A LEMMA OF LITTLEWOOD AND OFFORD [J].
ERDOS, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1945, 51 (12) :898-902
[8]  
Kleitman D., 1968, P C, P215
[9]   The width of random subsets of boolean lattices [J].
Kohayakawa, Y ;
Kreuter, B .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 100 (02) :376-386
[10]  
Kohayakawa Y, 2000, RANDOM STRUCT ALGOR, V16, P177, DOI 10.1002/(SICI)1098-2418(200003)16:2<177::AID-RSA4>3.0.CO