Validation of voting committees

被引:10
作者
Bax, E [1 ]
机构
[1] CALTECH, Dept Comp Sci, Pasadena, CA 91125 USA
关键词
D O I
10.1162/089976698300017584
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article contains a method to bound the test errors of voting committees with members chosen from a pool of trained classifiers. There are so many prospective committees that validating them directly does not achieve useful error bounds. Because there are fewer classifiers than prospective committees, it is better to validate the classifiers individually than use linear programming to infer committee error bounds. We test the method using credit card data. Also, we extend the method to infer bounds for classifiers in general.
引用
收藏
页码:975 / 986
页数:12
相关论文
共 15 条
[1]  
ABUMOSTAFA Y, 1996, WHAT YOU NEED KNOW V
[2]  
[Anonymous], 1982, ESTIMATION DEPENDENC
[3]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[4]  
[Anonymous], 1968, An introduction to probability theory and its applications
[5]  
Bax E, 1997, IEEE PACIF, P811, DOI 10.1109/PACRIM.1997.620383
[6]  
BREIMAN L, 1992, 367 U CAL BERK STAT
[7]  
Franklin J., 1980, Methods of mathematical economics
[9]  
Karp R. M., 1972, PROC IEEE 50 ANN S F, P85, DOI DOI 10.1007/978-1-4684-2001-2_9
[10]   ERROR ESTIMATION BY SERIES ASSOCIATION FOR NEURAL-NETWORK SYSTEMS [J].
KIM, K ;
BARTLETT, EB .
NEURAL COMPUTATION, 1995, 7 (04) :799-808