Super-resolved spatial transcriptomics by deep data fusion

被引:81
作者
Bergenstrahle, Ludvig [1 ]
He, Bryan [2 ]
Bergenstrahle, Joseph [1 ]
Abalo, Xesus [1 ]
Mirzazadeh, Reza [1 ]
Thrane, Kim [1 ]
Ji, Andrew L. [3 ]
Andersson, Alma [1 ]
Larsson, Ludvig [1 ]
Stakenborg, Nathalie [4 ]
Boeckxstaens, Guy [4 ]
Khavari, Paul [3 ]
Zou, James [2 ]
Lundeberg, Joakim [1 ]
Maaskola, Jonas [1 ,5 ]
机构
[1] KTH Royal Inst Technol, Dept Gene Technol, SciLifeLab, Stockholm, Sweden
[2] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
[3] Stanford Univ, Stanford Canc Inst, Stanford, CA 94305 USA
[4] Katholieke Univ Leuven, Dept Chron Dis & Metab, Leuven, Belgium
[5] Stockholm Univ, Dept Biochem & Biophys, SciLifeLab, Stockholm, Sweden
基金
瑞典研究理事会;
关键词
CELL RNA-SEQ; SINGLE-CELL; GENE-EXPRESSION; TISSUE; VISUALIZATION;
D O I
10.1038/s41587-021-01075-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The low resolution of spatial transcriptomics is substantially improved by including histology images. Current methods for spatial transcriptomics are limited by low spatial resolution. Here we introduce a method that integrates spatial gene expression data with histological image data from the same tissue section to infer higher-resolution expression maps. Using a deep generative model, our method characterizes the transcriptome of micrometer-scale anatomical features and can predict spatial gene expression from histology images alone.
引用
收藏
页码:476 / +
页数:17
相关论文
共 40 条
[1]   High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin [J].
Achim, Kaia ;
Pettit, Jean-Baptiste ;
Saraiva, Luis R. ;
Gavriouchkina, Daria ;
Larsson, Tomas ;
Arendt, Detlev ;
Marioni, John C. .
NATURE BIOTECHNOLOGY, 2015, 33 (05) :503-U215
[2]   Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography [J].
Andersson, Alma ;
Bergenstrahle, Joseph ;
Asp, Michaela ;
Bergenstrahle, Ludvig ;
Jurek, Aleksandra ;
Fernandez Navarro, Jose ;
Lundeberg, Joakim .
COMMUNICATIONS BIOLOGY, 2020, 3 (01)
[3]  
Bingham E, 2019, J MACH LEARN RES, V20
[4]   Variational Inference: A Review for Statisticians [J].
Blei, David M. ;
Kucukelbir, Alp ;
McAuliffe, Jon D. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) :859-877
[5]   C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation [J].
Bulla, Roberta ;
Tripodo, Claudio ;
Rami, Damiano ;
Ling, Guang Sheng ;
Agostinis, Chiara ;
Guarnotta, Carla ;
Zorzet, Sonia ;
Durigutto, Paolo ;
Botto, Marina ;
Tedesco, Francesco .
NATURE COMMUNICATIONS, 2016, 7
[6]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[7]   Robust decomposition of cell type mixtures in spatial transcriptomics [J].
Cable, Dylan M. ;
Murray, Evan ;
Zou, Luli S. ;
Goeva, Aleksandrina ;
Macosko, Evan Z. ;
Chen, Fei ;
Irizarry, Rafael A. .
NATURE BIOTECHNOLOGY, 2022, 40 (04) :517-+
[8]   Spatially resolved, highly multiplexed RNA profiling in single cells [J].
Chen, Kok Hao ;
Boettiger, Alistair N. ;
Moffitt, Jeffrey R. ;
Wang, Siyuan ;
Zhuang, Xiaowei .
SCIENCE, 2015, 348 (6233)
[9]   SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes [J].
Elosua-Bayes, Marc ;
Nieto, Paula ;
Mereu, Elisabetta ;
Gut, Ivo ;
Heyn, Holger .
NUCLEIC ACIDS RESEARCH, 2021, 49 (09) :E50
[10]   Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH [J].
Eng, Chee-Huat Linus ;
Lawson, Michael ;
Zhu, Qian ;
Dries, Ruben ;
Koulena, Noushin ;
Takei, Yodai ;
Yun, Jina ;
Cronin, Christopher ;
Karp, Christoph ;
Yuan, Guo-Cheng ;
Cai, Long .
NATURE, 2019, 568 (7751) :235-+