The discretized sum-product and projection theorems

被引:59
作者
Bourgain, Jean [1 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2010年 / 112卷
关键词
D O I
10.1007/s11854-010-0028-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new presentation of the discrete ring theorem for sets of real numbers [B]. Special attention is given to the relation between the various parameters. As an application, new Marstrand type projection theorems are obtained and formulated either in terms of box or Hausdorff dimension. It is shown that the dimension of the projections satisfies a nontrivial lower bound outside a very sparse set of exceptional directions.
引用
收藏
页码:193 / 236
页数:44
相关论文
共 9 条
[1]  
[Anonymous], 1995, Geometry of Sets and Measures in Euclidean Spaces
[2]   Mordell's exponential sum estimate revisited [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (02) :477-499
[3]   Estimates for the number of sums and products and for exponential sums in fields of prime order [J].
Bourgain, J. ;
Glibichuk, A. A. ;
Konyagin, S. V. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 73 :380-398
[4]   On the Erdos-Volkmann and Katz-Tao ring conjectures [J].
Bourgain, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (02) :334-365
[5]   On the spectral gap for finitely-generated subgroups of SU(2) [J].
Bourgain, Jean ;
Gamburd, Alex .
INVENTIONES MATHEMATICAE, 2008, 171 (01) :83-121
[6]   STATIONARY MEASURES AND EQUIDISTRIBUTION FOR ORBITS OF NONABELIA.N SEMIGROUPS ON THE TORUS [J].
Bourgain, Jean ;
Furman, Alex ;
Lindenstrauss, Elon ;
Mozes, Shahar .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (01) :231-280
[7]   MULTILINEAR EXPONENTIAL SUMS IN PRIME FIELDS UNDER OPTIMAL ENTROPY CONDITION ON THE SOURCES [J].
Bourgain, Jean .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 18 (05) :1477-1502
[8]  
Erdos P., 1983, STUDIES PURE MATH, P213
[9]  
Tao VT, 2006, CAM ST AD M, V105, P1, DOI 10.1017/CBO9780511755149