Modeling of thermal runaway propagation of NMC battery packs after fast charging operation

被引:77
作者
Wang, Wenhe [1 ,2 ]
He, Tengfei [3 ,4 ]
He, Sen [1 ]
You, Tianyu [1 ]
Khan, Faisal [5 ]
机构
[1] Chongqing Univ Sci & Technol, Coll Safety Engn, Chongqing 401331, Peoples R China
[2] Multiscale Res Ctr Proc Safety Oil & Gas Chem Ind, Chongqing Acad Safety Sci & Technol, Chongqing 401331, Peoples R China
[3] Nanjing Tech Univ, Coll Safety Sci & Engn, Nanjing 210009, Jiangsu, Peoples R China
[4] Univ Surrey, Dept Chem & Proc Engn, Guildford GU2 7XH, Surrey, England
[5] Mem Univ Newfoundland, Fac Engn & Appl Sci, C RISE, St John, NF A1B 3X5, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Lithium-ion battery; Thermal runaway propagation; Fast charging; Electrochemical-thermal coupled model; LITHIUM-ION BATTERY; EXPERIMENTAL VALIDATION; HEAT-GENERATION; BEHAVIOR; SIMULATION; DISCHARGE; CELL; FIRE; OPTIMIZATION; PERFORMANCE;
D O I
10.1016/j.psep.2021.08.006
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study presents a mathematical model and experimental verification of factors influencing thermal runaway propagation of NCM811/C lithium-ion battery module after fast charging operation. The key factors considered for the thermal runaway propagation include charging C-rate, battery spacing, triggering temperature, speed, and interval of the thermal runaway propagation. The analysis of the 3D model shows that increasing the spacing and triggering temperature of the battery will reduce the risk of thermal runaway propagation of the battery module and change the order of thermal runaway propagation. Further, the thermal runaway propagation speed increases gradually with the propagation process; however, it is inhibited by increasing triggering temperature and battery spacing and the decrease of charging C-rate. These observations play a critical role in the lithium-ion battery pack design. (c) 2021 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 117
页数:14
相关论文
共 69 条
[1]   A new open computational framework for highly-resolved coupled three-dimensional multiphysics simulations of Li-ion cells [J].
Allu, Srikanth ;
Kalnaus, Sergiy ;
Elwasif, Wael ;
Simunovic, Srdjan ;
Turner, John A. ;
Pannala, Sreekanth .
JOURNAL OF POWER SOURCES, 2014, 246 :876-886
[2]   Investigation on lithium-ion battery electrochemical and thermal characteristic based on electrochemical-thermal coupled model [J].
An, Zhoujian ;
Jia, Li ;
Wei, Liting ;
Dang, Chao ;
Peng, Qi .
APPLIED THERMAL ENGINEERING, 2018, 137 :792-807
[3]   Numerical simulation of thermal behavior of lithium-ion secondary batteries using the enhanced single particle model [J].
Baba, Naoki ;
Yoshida, Hiroaki ;
Nagaoka, Makoto ;
Okuda, Chikaaki ;
Kawauchi, Shigehiro .
JOURNAL OF POWER SOURCES, 2014, 252 :214-228
[4]   Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system [J].
Basu, Suman ;
Hariharan, Krishnan S. ;
Kolake, Subramanya Mayya ;
Song, Taewon ;
Sohn, Dong Kee ;
Yeo, Taejung .
APPLIED ENERGY, 2016, 181 :1-13
[5]   A GENERAL ENERGY-BALANCE FOR BATTERY SYSTEMS [J].
BERNARDI, D ;
PAWLIKOWSKI, E ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1985, 132 (01) :5-12
[6]   A Thermal Runaway Simulation on a Lithium Titanate Battery and the Battery Module [J].
Chen, Man ;
Sun, Qiujuan ;
Li, Yongqi ;
Wu, Ke ;
Liu, Bangjin ;
Peng, Peng ;
Wang, Qingsong .
ENERGIES, 2015, 8 (01) :490-500
[7]   Environmental pressure effects on thermal runaway and fire behaviors of lithium-ion battery with different cathodes and state of charge [J].
Chen, Mingyi ;
Ouyang, Dongxu ;
Weng, Jingwen ;
Liu, Jiahao ;
Wang, Jian .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2019, 130 :250-256
[8]   Identification and characteristic analysis of powder ejected from a lithium ion battery during thermal runaway at elevated temperatures [J].
Chen, Shichen ;
Wang, Zhirong ;
Yan, Wei .
JOURNAL OF HAZARDOUS MATERIALS, 2020, 400
[9]   A pseudo three-dimensional electrochemical-thermal model of a cylindrical LiFePO4/graphite battery [J].
Chiew, J. ;
Chin, C. S. ;
Toh, W. D. ;
Gao, Z. ;
Jia, J. ;
Zhang, C. Z. .
APPLIED THERMAL ENGINEERING, 2019, 147 :450-463
[10]   An Efficient Parallelizable 3D Thermoelectrochemical Model of a Li-Ion Cell [J].
Christensen, Jake ;
Cook, David ;
Albertus, Paul .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (11) :A2258-A2267