Radio wave propagation through vegetation: Factors influencing signal attenuation

被引:46
作者
Savage, N
Ndzi, D
Seville, A
Vilar, E
Austin, J
机构
[1] Univ Portsmouth, Dept Elect & Comp Engn, Microwave Telecommun Syst Res Grp, Portsmouth PO1 3DJ, Hants, England
[2] Rutherford Appleton Lab, Radio Commun Res Unit, Didcot OX11 0QX, Oxon, England
关键词
vegetation; excess attenuation; delay spread; foliage; narrowband; wideband;
D O I
10.1029/2002RS002758
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
[1] The paper describes an extensive wideband channel sounding measurement campaign to investigate signal propagation through vegetation. The measurements have been conducted at three frequencies (1.3, 2 and 11.6 GHz) at sites with different measurement geometries and tree species. The data have been used to evaluate current narrowband empirical vegetation attenuation models and study the prevailing propagation mechanisms. Evaluation of the modified exponential decay (MED), maximum attenuation (MA) and nonzero gradient (NZG) models show that on a site by site basis, the NZG model gives the best prediction of excess attenuation due to vegetation. The MA model has been found to be the worst of the three models. The studies have shown that the measurement site used to obtain the NZG model parameter values given in International Telecommunication Union (ITU) [2001] is influenced by metal lampposts and passing traffic, and thus was based on corrupted data. The results show that the leaf state, measurement geometry and vegetation density are more important factors influencing signal attenuation than tree species or leaf shape. Generally, the 11.6 GHz signal was attenuated much more than the 1.3 and 2 GHz signals by vegetation in-leaf, but the differences in attenuation were not significant in the out-of-leaf state. A successful excess attenuation model due to vegetation must consider the measurement geometry and vegetation descriptive parameters as well as any contributions from ground reflection and/or diffraction over the top or round edges of the trees.
引用
收藏
页数:14
相关论文
共 30 条
[1]   Measurements and prediction model optimisation for signal attenuation in vegetation media at centimetre wave frequencies [J].
Al-Nuaimi, MO ;
Stephens, RBL .
IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION, 1998, 145 (03) :201-206
[2]  
ALNUAIMI MO, 1994, IEE P H, V141
[3]  
[Anonymous], 1978, WAVE PROPAGATION SCA, DOI DOI 10.1016/B978-0-12-374701-3.X5001-7
[4]   A spread spectrum communications channel sounder [J].
Austin, J ;
Ditmar, WPA ;
Lam, WK ;
Vilar, E ;
Wan, KW .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1997, 45 (07) :840-847
[5]   A THEORY AND MODEL FOR WAVE-PROPAGATION THROUGH FOLIAGE [J].
BROWN, GS ;
CURRY, WJ .
RADIO SCIENCE, 1982, 17 (05) :1027-1036
[6]  
*COMM EUR UN, 1996, 235 COST COMM EUR UN
[7]  
DIDASCALOU D, 2000, IEE T GEOSCI REMOTE, V38
[8]   AN AUTOREGRESSIVE APPROACH TO THE IDENTIFICATION OF MULTIPATH RAY PARAMETERS FROM FIELD-MEASUREMENTS [J].
HEWITT, A ;
LAU, WH ;
AUSTIN, J ;
VILAR, E .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1989, 37 (11) :1136-1143
[9]  
LAM WK, 1995, THESIS U PORTSMOUTH
[10]   ANALYSIS OF THE TIME-VARIANT STRUCTURE OF MICROWAVE LINE-OF-SIGHT MULTIPATH PHENOMENA [J].
LAU, WH ;
AUSTIN, J ;
HEWITT, A ;
VILAR, E ;
MARTIN, L .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1991, 39 (06) :847-855