Fractional error estimates of splitting schemes for the nonlinear Schrodinger equation

被引:24
作者
Eilinghoff, Johannes [1 ]
Schnaubelt, Roland [1 ]
Schratz, Katharina [1 ]
机构
[1] Karlsruhe Inst Technol, Dept Math, D-76128 Karlsruhe, Germany
关键词
Nonlinear Schrodinger equation; Splitting; Error analysis; Stability; Fractional convergence order; Interpolation; TIME;
D O I
10.1016/j.jmaa.2016.05.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the Lie and the Strang splitting for the cubic nonlinear Schrodinger equation on the full space and on the torus in up to three spatial dimensions. We prove that the Strang splitting converges in L-2 with order 1+theta for initial values in H2+2 theta with theta is an element of (0,1) and that the Lie splitting converges with order one for initial values in H-2. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:740 / 760
页数:21
相关论文
共 22 条
[1]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[2]   The Sobolev inequality on the torus revisited [J].
Benyi, Arpad ;
Oh, Tadahiro .
PUBLICATIONES MATHEMATICAE DEBRECEN, 2013, 83 (03) :359-374
[3]   Order estimates in time of splitting methods for the nonlinear Schrodinger equation [J].
Besse, C ;
Bidégaray, B ;
Descombes, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (01) :26-40
[4]  
Bourgain J., 1999, AMS C PUBLICATIONS, V46
[5]  
Caliari M., 2007, CONVERGENCE EN UNPUB
[6]  
Cazenave Th., 2003, COURANT LECT NOTES M
[7]  
Faou E., 2002, GEOMETRIC NUMERICAL
[8]   ERROR ANALYSIS OF TRIGONOMETRIC INTEGRATORS FOR SEMILINEAR WAVE EQUATIONS [J].
Gauckler, Ludwig .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) :1082-1106
[9]   Splitting Integrators for Nonlinear Schrodinger Equations Over Long Times [J].
Gauckler, Ludwig ;
Lubich, Christian .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2010, 10 (03) :275-302
[10]   Nonlinear Schrodinger Equations and Their Spectral Semi-Discretizations Over Long Times [J].
Gauckler, Ludwig ;
Lubich, Christian .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2010, 10 (02) :141-169