Fractional error estimates of splitting schemes for the nonlinear Schrodinger equation

被引:24
|
作者
Eilinghoff, Johannes [1 ]
Schnaubelt, Roland [1 ]
Schratz, Katharina [1 ]
机构
[1] Karlsruhe Inst Technol, Dept Math, D-76128 Karlsruhe, Germany
关键词
Nonlinear Schrodinger equation; Splitting; Error analysis; Stability; Fractional convergence order; Interpolation; TIME;
D O I
10.1016/j.jmaa.2016.05.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the Lie and the Strang splitting for the cubic nonlinear Schrodinger equation on the full space and on the torus in up to three spatial dimensions. We prove that the Strang splitting converges in L-2 with order 1+theta for initial values in H2+2 theta with theta is an element of (0,1) and that the Lie splitting converges with order one for initial values in H-2. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:740 / 760
页数:21
相关论文
共 50 条
  • [1] Conservative Numerical Schemes for the Nonlinear Fractional Schrodinger Equation
    Wu, Longbin
    Ma, Qiang
    Ding, Xiaohua
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (03) : 560 - 579
  • [2] Error Analysis and Numerical Simulations of Strang Splitting Method for Space Fractional Nonlinear Schrodinger Equation
    Zhai, Shuying
    Wang, Dongling
    Weng, Zhifeng
    Zhao, Xuan
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (02) : 965 - 989
  • [3] Improved Error Bounds of the Strang Splitting Method for the Highly Oscillatory Fractional Nonlinear Schrodinger Equation
    Feng, Yue
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (02)
  • [4] Order estimates in time of splitting methods for the nonlinear Schrodinger equation
    Besse, C
    Bidégaray, B
    Descombes, E
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (01) : 26 - 40
  • [5] High-order schemes for the fractional coupled nonlinear Schrodinger equation
    Yin, Fengli
    Xu, Dongliang
    Yang, Wenjie
    NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (04) : 1434 - 1453
  • [6] ON OPTIMAL ORDER ERROR-ESTIMATES FOR THE NONLINEAR SCHRODINGER-EQUATION
    KARAKASHIAN, O
    AKRIVIS, GD
    DOUGALIS, VA
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (02) : 377 - 400
  • [7] LOW REGULARITY FULL ERROR ESTIMATES FOR THE CUBIC NONLINEAR SCHRODINGER EQUATION
    Ji, Lun
    Ostermann, Alexander
    Rousset, Frederic
    Schratz, Katharina
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (05) : 2071 - 2086
  • [8] Error Estimates of Finite Difference Methods for the Biharmonic Nonlinear Schrodinger Equation
    Ma, Ying
    Zhang, Teng
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 95 (01)
  • [9] Fractional nonlinear Schrodinger equation
    Mendez-Navarro, Jesus A.
    Naumkin, Pavel I.
    Sanchez-Suarez, Isahi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06):
  • [10] Unconditional error analysis of Galerkin FEMs for nonlinear fractional Schrodinger equation
    Li, Meng
    Huang, Chengming
    Zhang, Zongbiao
    APPLICABLE ANALYSIS, 2018, 97 (02) : 295 - 315