The δ-vectors of reflexive polytopes and of the dual polytopes

被引:1
|
作者
Tsuchiya, Akiyoshi [1 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Suita, Osaka 5650871, Japan
关键词
Reflexive polytope; Ehrhart polynomial; delta-vector; Unimodularly equivalent; CONVEX POLYTOPES; DIMENSIONS; POINTS;
D O I
10.1016/j.disc.2016.04.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let delta(P) be the delta-vector of a reflexive polytope P subset of R-d of dimension d and delta(P-v) the delta-vector of the dual polytope p(v) subset of R-d. In general, delta(P) = delta(P-v) does not hold. In this paper, we give a higher-dimensional construction of a reflexive polytope whose delta-vector equals the delta-vector of the dual polytope. In particular, we consider the case that the reflexive polytope and the dual polytope are unimodularly equivalent (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:2450 / 2456
页数:7
相关论文
共 50 条
  • [1] Flow polytopes and the graph of reflexive polytopes
    Altmann, Klaus
    Nill, Benjamin
    Schwentner, Sabine
    Wiercinska, Izolda
    DISCRETE MATHEMATICS, 2009, 309 (16) : 4992 - 4999
  • [2] Reflexive polytopes arising from edge polytopes
    Nagaoka, Takahiro
    Tsuchiya, Akiyoshi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 557 : 438 - 454
  • [3] Unconditional Reflexive Polytopes
    Kohl, Florian
    Olsen, McCabe
    Sanyal, Raman
    DISCRETE & COMPUTATIONAL GEOMETRY, 2020, 64 (02) : 427 - 452
  • [4] Unconditional Reflexive Polytopes
    Florian Kohl
    McCabe Olsen
    Raman Sanyal
    Discrete & Computational Geometry, 2020, 64 : 427 - 452
  • [5] DUAL POLYTOPES OF RATIONAL CONVEX POLYTOPES
    HIBI, T
    COMBINATORICA, 1992, 12 (02) : 237 - 240
  • [6] Reflexive polytopes and discrete polymatroids
    Herzog, Juergen
    Hibi, Takayuki
    JOURNAL OF COMBINATORICS, 2024, 15 (04) : 529 - 535
  • [7] Dwork congruences and reflexive polytopes
    Samol, Kira
    van Straten, Duco
    ANNALES MATHEMATIQUES DU QUEBEC, 2015, 39 (02): : 185 - 203
  • [8] An Ehrhart series formula for reflexive polytopes
    Braun, Benjamin
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [9] Ehrhart polynomial roots of reflexive polytopes
    Hegedus, Gabor
    Higashitani, Akihiro
    Kasprzyk, Alexander
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (01):
  • [10] Interlacing Ehrhart polynomials of reflexive polytopes
    Higashitani, Akihiro
    Kummer, Mario
    Michalek, Mateusz
    SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (04): : 2977 - 2998