Tetrahedron maps and symmetries of three dimensional integrable discrete equations

被引:19
|
作者
Kassotakis, P. [1 ]
Nieszporski, M. [2 ]
Papageorgiou, V [3 ]
Tongas, A. [3 ]
机构
[1] Univ Cyprus, Dept Math & Stat, Nicosia, Cyprus
[2] Uniwersytet Warszawski, Wydzial Fizyki, Katedra Metod Matematycznych, Warsaw, Poland
[3] Univ Patras, Dept Math, Patras, Greece
关键词
YANG-BAXTER MAPS; CLASSIFICATION;
D O I
10.1063/1.5124874
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A relationship between the tetrahedron equation for maps and the consistency property of integrable discrete equations on Z(3) is investigated. Our approach is a generalization of a method developed in the context of Yang-Baxter maps, based on the invariants of symmetry groups of the lattice equations. The method is demonstrated by a case-by-case analysis of the octahedron type lattice equations classified recently, leading to some new examples of tetrahedron maps and integrable coupled lattice equations. Published under license by AIP Publishing.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Classification of three-dimensional integrable scalar discrete equations
    Tsarev, Sergey Petrovich
    Wolf, Thomas
    LETTERS IN MATHEMATICAL PHYSICS, 2008, 84 (01) : 31 - 39
  • [2] Classification of Three-Dimensional Integrable Scalar Discrete Equations
    Sergey Petrovich Tsarev
    Thomas Wolf
    Letters in Mathematical Physics, 2008, 84 : 31 - 39
  • [3] Three-dimensional integrable models based on modified tetrahedron equations and quantum dilogarithm
    Maillard, JM
    Sergeev, SM
    PHYSICS LETTERS B, 1997, 405 (1-2) : 55 - 63
  • [4] Yang-Baxter maps and symmetries of integrable equations on quad-graphs
    Papageorgiou, Vassilios G.
    Tongas, Anastasios G.
    Veselov, Alexander P.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (08)
  • [5] On Symmetries of Integrable Quadrilateral Equations
    Cheng, Junwei
    Liu, Jin
    Zhang, Da-jun
    SYMMETRY-BASEL, 2024, 16 (06):
  • [6] Creating and relating three-dimensional integrable maps
    Roberts, John A. G.
    Quispel, G. R. W.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (42): : L605 - L615
  • [7] Yang-Baxter maps, discrete integrable equations and quantum groups
    Bazhanov, Vladimir V.
    Sergeev, Sergey M.
    NUCLEAR PHYSICS B, 2018, 926 : 509 - 543
  • [8] Three-dimensional chaotic flows with discrete symmetries
    Chechin, GM
    Ryabov, DS
    PHYSICAL REVIEW E, 2004, 69 (03): : 036202 - 1
  • [9] Integrable maps which preserve functions with symmetries
    Fordy, Allan P.
    Kassotakis, Pavlos
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (20)
  • [10] λ-symmetries for discrete equations
    Levi, D.
    Rodriguez, M. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (29)