Predicting Thermal Properties of Crystals Using Machine Learning

被引:39
作者
Tawfik, Sherif Abdulkader [1 ]
Isayev, Olexandr [2 ]
Spencer, Michelle J. S. [1 ]
Winkler, David A. [3 ,4 ,5 ,6 ]
机构
[1] RMIT Univ, Sch Sci, GPO Box 2476, Melbourne, Vic 3001, Australia
[2] Univ N Carolina, UNC Eshelman Sch Pharm, Div Chem Biol & Med Chem, Lab Mol Modeling, Chapel Hill, NC 27599 USA
[3] Univ Nottingham, Sch Pharm, Nottingham NG7 2RD, England
[4] Monash Univ, Monash Inst Pharmaceut Sci, 381 Royal Parade, Parkville, Vic 3052, Australia
[5] La Trobe Univ, Latrobe Inst Mol Sci, Kingsbury Dr, Bundoora, Vic 3086, Australia
[6] CSIRO Mfg, Bayview Ave, Clayton, Vic 3168, Australia
基金
美国国家科学基金会;
关键词
crystal properties; density-functional theory; dielectric constant; entropy; machine learning;
D O I
10.1002/adts.201900208
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Calculating vibrational properties of crystals using quantum mechanical (QM) methods is a challenging problem in computational material science. This problem is solved using complementary machine learning methods that rapidly and reliably recapitulate entropy, specific heat, effective polycrystalline dielectric function, and a non-vibrational property (band gap) for materials calculated by accurate but lengthy QM methods. The materials are described mathematically using property-labeled materials fragment descriptors. The machine learning models predict the QM properties with root mean square errors of 0.31 meV per atom per K for entropy, 0.18 meV per atom per K for specific heat, 4.41 for the trace of the dielectric tensor, and 0.5 eV for band gap. These models are sufficiently accurate to allow rapid screening of large numbers of crystal structures to accelerate material discovery.
引用
收藏
页数:6
相关论文
共 28 条
  • [1] Beware of R2: Simple, Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR Models
    Alexander, D. L. J.
    Tropsha, A.
    Winkler, David A.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (07) : 1316 - 1322
  • [2] THE INORGANIC CRYSTAL-STRUCTURE DATA-BASE
    BERGERHOFF, G
    HUNDT, R
    SIEVERS, R
    BROWN, ID
    [J]. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1983, 23 (02): : 66 - 69
  • [3] BISHOP C. M., 2006, Pattern recognition and machine learning, DOI [DOI 10.1117/1.2819119, 10.1007/978-0-387-45528-0]
  • [4] Relevance Vector Machines: Sparse Classification Methods for QSAR
    Burden, Frank R.
    Winkler, David A.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (08) : 1529 - 1534
  • [5] XGBoost: A Scalable Tree Boosting System
    Chen, Tianqi
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794
  • [6] Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
  • [7] Curtarolo S, 2013, NAT MATER, V12, P191, DOI [10.1038/NMAT3568, 10.1038/nmat3568]
  • [8] AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations
    Curtarolo, Stefano
    Setyawan, Wahyu
    Wang, Shidong
    Xue, Junkai
    Yang, Kesong
    Taylor, Richard H.
    Nelson, Lance J.
    Hart, Gus L. W.
    Sanvito, Stefano
    Buongiorno-Nardelli, Marco
    Mingo, Natalio
    Levy, Ohad
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2012, 58 : 227 - 235
  • [9] Daniel L. M. R., 2018, NAT REV MATER, V3, P5
  • [10] Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces
    Epa, V. Chandana
    Yang, Jing
    Mei, Ying
    Hook, Andrew L.
    Langer, Robert
    Anderson, Daniel G.
    Davies, Martyn C.
    Alexander, Morgan R.
    Winkler, David A.
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (39) : 20902 - 20906