Effect of the Framework Flexibility on the Centricities in Centrosymmetric In2Zn(Seo3)4 and Noncentrosymmetric Ga2Zn(TeO3)4

被引:46
作者
Lee, Dong Woo [1 ]
Bak, Dan-bee [2 ]
Kim, Saet Byeol [1 ]
Kim, Jiwon [1 ]
Ok, Kang Min [1 ]
机构
[1] Chung Ang Univ, Dept Chem, Seoul 156756, South Korea
[2] Chung Ang Univ, Dept Chem Educ, Seoul 156756, South Korea
基金
新加坡国家研究基金会;
关键词
BOND-VALENCE PARAMETERS; OF-CENTER DISTORTIONS; CRYSTAL-STRUCTURE; METAL SELENITES; ZINC SELENITE; CO; NI; CHEMISTRY; RB; ZN;
D O I
10.1021/ic300909s
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The solid-state syntheses, crystal structures, and characterization of two stoichiometrically similar quaternary mixed metal selenite and tellurite, In2Zn(Seo(3))(4) and Ga2Zn(TeO3)(4), respectively, are reported. While In2Zn(Seo(3)), crystallizes in the centrosymmetric monoclinic space group P-21/n (No. 14) with a = 8.4331(7) angstrom, b = 4.7819(4) angstrom, c = 14.6583(13) angstrom, and beta = 101.684(6)degrees, Ga2Zn(TeO3)(4) crystallizes in the non-centrosymmetric space group i-43d (No. 220) with a = b = c = 10.5794(8) angstrom. In2Zn(SeO3)(4) exhibits a two-dimensional crystal structure consisting of distorted InO6 octahedra, ZnO6 octahedra, and SeO3 polyhedra. Ga2Zn(TeO3)(4) shows a three-dimensional framework structure that is composed of GaO4 or ZnO, and TeO3 polyhedra. An effect of the framework flexibility on the space group centricity is discussed. The SHG (second harmonic generation) efficiency of noncentrosymmetric Ga2Zn(TeO3)(4), using 1064 nm radiation, is similar to that of KH2PO4 (KDP) and is not phase-matchable (Type 1). Complete characterizations including infrared spectroscopy and thermal analyses for the reported materials are also presented, as are dipole moment calculations.
引用
收藏
页码:7844 / 7850
页数:7
相关论文
共 50 条
[31]   New quaternary alkali metal cadmium selenites, A2Cd(SeO3)2 (A = K, Rb, and Cs) and Li2Cd3(SeO3)4 [J].
Lu, Minfeng ;
Jo, Hongil ;
Oh, Seung-Jin ;
Ok, Kang Min .
JOURNAL OF SOLID STATE CHEMISTRY, 2017, 256 :213-218
[32]   Syntheses and structures of three new scandium selenites:: Sc2(SeO3)3 • H2O, Sc2 (SeO3)3 • 3H2O and CsSc3(SeO3)4 (HSeO3)2 • 2H2O [J].
Johnston, MG ;
Harrison, WTA .
JOURNAL OF SOLID STATE CHEMISTRY, 2004, 177 (11) :4316-4324
[33]   Syntheses and crystal structures of novel Zr(SeO3)(SeO4) and Zr(SeO4)2•H2O [J].
Giester, Gerald ;
Wildner, Manfred .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2015, 71 :S356-S356
[34]   The First UV Nonlinear Optical Selenite Material: Fluorination Control in CaYF(SeO3)2 and Y3F(SeO3)4 [J].
Li, Peng-Fei ;
Hu, Chun-Li ;
Kong, Fang ;
Mao, Jiang-Gao .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (17)
[35]   The crystal structure of Ba2Mn(SeO3)2Cl2 containing ∞1 [Mn(SeO3)2Cl2]4- chains [J].
Geng, Lei .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE-NEW CRYSTAL STRUCTURES, 2021, 236 (04) :771-772
[36]   Synthesis and Crystal Structure of the Iron(III) Oxotellurate(IV) Phosphate Oxide Chloride Fe11(TeO3)2(TeO4)3(PO4)2O4Cl3 [J].
Zimmermann, Iwan ;
Johnsson, Mats .
ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2014, 640 (12-13) :2435-2438
[37]   Unveiling electronic and magnetic properties of Cu3(SeO3)2Cl2 and Cu3(TeO3)2Br2 oxohalide systems via first-principles calculations [J].
Lafargue-Dit-Hauret, William ;
Rocquefelte, Xavier .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (09)
[38]   Three new copper-lead selenite bromides obtained by chemical vapor transport: Pb5Cu+4(SeO3)4Br6, Pb8Cu2+(SeO3)4Br10, and the synthetic analogue of the mineral sarrabusite, Pb5Cu2+(SeO3)4(Br,Cl)4 [J].
Siidra, Oleg I. I. ;
Grishaev, Vasili Yu. ;
Nazarchuk, Evgeni V. V. ;
Kayukov, Roman A. A. .
MINERALOGY AND PETROLOGY, 2023, 117 (02) :281-291
[39]   Mixed lone-pair and mixed anion compounds: Pb3(SeO3)(HSeO3)Br3, Pb3(SeO3)(OH)Br3, CdPb8(SeO3)4Cl4Br6 and RbBi(SeO3)F2 [J].
Shang, Meng ;
Halasyamani, P. Shiv .
JOURNAL OF SOLID STATE CHEMISTRY, 2020, 282
[40]   Synthesis and characterization of Hf(SO4)2(H2O)4 and Hf(SeO3)(SeO4)(H2O) [J].
Genieva, S. ;
Yankova, R. ;
Baikusheva-Dimitrova, G. ;
Halachev, N. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2016, 124 (03) :1595-1600