Stochastic dynamic causal modelling of fMRI data: Should we care about neural noise?

被引:84
作者
Daunizeau, J. [1 ,2 ,3 ]
Stephan, K. E. [2 ,3 ,4 ,5 ]
Friston, K. J. [2 ]
机构
[1] Brain & Spine Inst, Motivat Brain & Behav Grp, F-75013 Paris, France
[2] UCL, Wellcome Trust Ctr Neuroimaging, London WC1E 6BT, England
[3] Univ Zurich, Lab Social & Neural Syst Res, Dept Econ, CH-8006 Zurich, Switzerland
[4] Univ Zurich, TNU, Inst Biomed Engn, CH-8006 Zurich, Switzerland
[5] ETH, Zurich, Switzerland
基金
英国惠康基金;
关键词
DCM; Network; System identification; Neural noise; Nonlinear; State-space; State-dependent coupling; fMRI; EEG-FMRI; RESPONSES; THALAMUS; NETWORK; SPIKE;
D O I
10.1016/j.neuroimage.2012.04.061
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Dynamic causal modelling (DCM) was introduced to study the effective connectivity among brain regions using neuroimaging data. Until recently, DCM relied on deterministic models of distributed neuronal responses to external perturbation (e.g., sensory stimulation or task demands). However, accounting for stochastic fluctuations in neuronal activity and their interaction with task-specific processes may be of particular importance for studying state-dependent interactions. Furthermore, allowing for random neuronal fluctuations may render DCM more robust to model misspecification and finesse problems with network identification. In this article, we examine stochastic dynamic causal models (sDCM) in relation to their deterministic counterparts (dDCM) and highlight questions that can only be addressed with sDCM. We also compare the network identification performance of deterministic and stochastic DCM, using Monte Carlo simulations and an empirical case study of absence epilepsy. For example, our results demonstrate that stochastic DCM can exploit the modelling of neural noise to discriminate between direct and mediated connections. We conclude with a discussion of the added value and limitations of sDCM, in relation to its deterministic homologue. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:464 / 481
页数:18
相关论文
共 46 条
[1]   On the local stability of limit cycles [J].
Ali, F ;
Menzinger, M .
CHAOS, 1999, 9 (02) :348-356
[2]  
Berglund N., 2005, PROBABILITY ITS APPL
[3]   Dynamic causal modelling: A critical review of the biophysical and statistical foundations [J].
Daunizeau, J. ;
David, O. ;
Stephan, K. E. .
NEUROIMAGE, 2011, 58 (02) :312-322
[4]   Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models [J].
Daunizeau, J. ;
Friston, K. J. ;
Kiebel, S. J. .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (21) :2089-2118
[5]   Optimizing Experimental Design for Comparing Models of Brain Function [J].
Daunizeau, Jean ;
Preuschoff, Kerstin ;
Friston, Karl J. ;
Stephan, Klaas .
PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (11)
[6]   Striatal Prediction Error Modulates Cortical Coupling [J].
den Ouden, Hanneke E. M. ;
Daunizeau, Jean ;
Roiser, Jonathan ;
Friston, Karl J. ;
Stephan, Klaas E. .
JOURNAL OF NEUROSCIENCE, 2010, 30 (09) :3210-3219
[7]   Thalamic Gating of Corticostriatal Signaling by Cholinergic Interneurons [J].
Ding, Jun B. ;
Guzman, Jaime N. ;
Peterson, Jayms D. ;
Goldberg, Joshua A. ;
Surmeier, D. James .
NEURON, 2010, 67 (02) :294-307
[8]   Functional neuroanatomy of the hypnotic state [J].
Faymonville, Marie-Elisabeth ;
Boly, Melanie ;
Laureys, Steven .
JOURNAL OF PHYSIOLOGY-PARIS, 2006, 99 (4-6) :463-469
[9]  
Floresco SB, 2003, J NEUROSCI, V23, P3930
[10]  
Friston K, 2007, STATISTICAL PARAMETRIC MAPPING: THE ANALYSIS OF FUNCTIONAL BRAIN IMAGES, P1