Spectral properties of adjacency and distance matrices for various networks

被引:0
|
作者
Malarz, Krzysztof [1 ]
机构
[1] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland
来源
COMPUTATIONAL SCIENCE - ICCS 2008, PT 2 | 2008年 / 5102卷
关键词
eigensystem; growing networks; classical random graphs; computer simulations;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
The spectral properties of the adjacency (connectivity) and distance matrix for various types of networks: exponential, scale-free (Albert-Barabasi) and classical random ones (Erdos-Renyi) are evaluated. The graph spectra for dense graph in the Erdos-Renyi model are derived analytically.
引用
收藏
页码:559 / 567
页数:9
相关论文
共 50 条
  • [1] Spectral properties of distance matrices
    Bogomolny, E
    Bohigas, O
    Schmit, C
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 3595 - 3616
  • [2] Effect of unfolding on the spectral statistics of adjacency matrices of complex networks
    Abuelenin, Sherif M.
    Abul-Magd, Adel Y.
    COMPLEX ADAPTIVE SYSTEMS 2012, 2012, 12 : 69 - 74
  • [3] On the Spectral Properties of Line Distance Matrices
    You, Zhifu
    Liu, Bolian
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 62 (03) : 673 - 679
  • [4] The degree-distance and transmission-adjacency matrices
    Alfaro, Carlos A.
    Zapata, Octavio
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (06):
  • [5] SPECTRAL DISTRIBUTIONS OF ADJACENCY AND LAPLACIAN MATRICES OF RANDOM GRAPHS
    Ding, Xue
    Jiang, Tiefeng
    ANNALS OF APPLIED PROBABILITY, 2010, 20 (06): : 2086 - 2117
  • [6] On adjacency-distance spectral radius and spread of graphs
    Guo, Haiyan
    Zhou, Bo
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 369
  • [7] On description of biological sequences by spectral properties of line distance matrices
    Jaklic, Gasper
    Pisanski, Tomaz
    Randic, Milan
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2007, 58 (02) : 301 - 307
  • [8] α-ADJACENCY: A GENERALIZATION OF ADJACENCY MATRICES
    Hudelson, M.
    Mcdonald, J.
    Wendler, E.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 365 - 375
  • [9] Visualizing Networks using Adjacency Matrices: Progresses and Challenges
    Fekete, Jean-Daniel
    2009 11TH IEEE INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN AND COMPUTER GRAPHICS, PROCEEDINGS, 2009, : 32 - 32