Prediction of atomic force microscope probe dynamics through the receptance coupling method

被引:4
作者
Mehrpouya, M. [1 ]
Park, S. S. [1 ]
机构
[1] Univ Calgary, MEDAL, Dept Mech & Mfg Engn, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
atomic force microscopy; displacement measurement; frequency response; microsensors; CANTILEVER; TIP; IDENTIFICATION; CONTACT;
D O I
10.1063/1.3664787
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The increased growth in the use of tip-based sensing, manipulations, and fabrication of devices in atomic force microscopy (AFM) necessitates the accurate prediction of the dynamic behavior of the AFM probe. The chip holder, to which the micro-sensing device is attached, and the rest of the AFM system can affect the overall dynamics of the probe. In order to consider these boundary effects, we propose a novel receptance coupling method to mathematically combine the dynamics of the AFM setup and probe, based on the equilibrium and compatibility conditions at the joint. Once the frequency response functions of displacement over force at the tool tip are obtained, the dynamic interaction forces between the tip and the sample in nanoscale can be determined by measuring the probe tip displacement. (C) 2011 American Institute of Physics. [doi:10.1063/1.3664787]
引用
收藏
页数:10
相关论文
共 24 条
[1]   Vibration of the cantilever in Force Modulation Microscopy analysis by a finite element model [J].
Arinero, R ;
Lévêque, G .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (01) :104-111
[2]  
Ewins D. J., 1995, Modal Testing: Theory and Practice
[3]   Dynamics of a vibrating tip near or in intermittent contact with a surface [J].
García, R ;
San Paulo, A .
PHYSICAL REVIEW B, 2000, 61 (20) :13381-13384
[4]   Frequency domain identification of tip-sample van der Waals interactions in resonant atomic force microcantilevers [J].
Hu, SQ ;
Howell, S ;
Raman, A ;
Reifenberger, R ;
Franchek, M .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2004, 126 (03) :343-351
[5]  
Lee SI, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.115409
[6]   Phase imaging and stiffness in tapping-mode atomic force microscopy [J].
Magonov, SN ;
Elings, V ;
Whangbo, MH .
SURFACE SCIENCE, 1997, 375 (2-3) :L385-L391
[7]   Atomic force microscope probe-based nanometric scribing [J].
Malekian, M. ;
Park, S. S. ;
Strathearn, D. ;
Mostofa, Md G. ;
Jun, M. B. G. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2010, 20 (11)
[8]   Tip-based nanomanufacturing by electrical, chemical, mechanical and thermal processes [J].
Malshe, A. P. ;
Rajurkar, K. P. ;
Virwani, K. R. ;
Taylor, C. R. ;
Bourell, D. L. ;
Levy, G. ;
Sundaram, M. M. ;
McGeough, J. A. ;
Kalyanasundaram, V. ;
Samant, A. N. .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2010, 59 (02) :628-651
[9]   Equivalent point-mass models of continuous atomic force microscope probes [J].
Melcher, John ;
Hu, Shuiqing ;
Raman, Arvind .
APPLIED PHYSICS LETTERS, 2007, 91 (05)
[10]   Dynamic properties of AFM cantilevers and the calibration of their spring constants [J].
Mendels, David-A ;
Lowe, Martin ;
Cuenat, Alexandre ;
Cain, Markys G. ;
Vallejo, Elena ;
Ellis, David ;
Mendels, Francois .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2006, 16 (08) :1720-1733