Irreducible Components of Deformation Spaces: Wild 2-Adic Exercises

被引:10
作者
Colmez, Pierre [1 ]
Dospinescu, Gabriel [2 ]
Paskunas, Vytautas [3 ]
机构
[1] CNRS, Inst Math Jussieu, F-75005 Paris, France
[2] UMPA, Ecole Normale Super Lyon, F-69007 Lyon, France
[3] Univ Duisburg Essen, Fak Math, D-45117 Essen, Germany
关键词
D O I
10.1093/imrn/rnu089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the irreducible components of the space of framed deformations of the trivial two-dimensional mod 2 representation of the absolute Galois group of Q(2) are in natural bijection with those of the trivial character, confirming a conjecture of Bockle. We deduce from this result that crystalline points are Zariski dense in that space: this provides the missing ingredient for the surjectivity of the p-adic local Langlands correspondence for GL(2)(Q(p)) in the case p=2 ( the result was already known for p >= 3).
引用
收藏
页码:5333 / 5356
页数:24
相关论文
共 23 条
[1]  
[Anonymous], 2009, PREPRINT
[2]  
Berger L, 2010, ASTERISQUE, P155
[3]   On some modular representations of the Borel subgroup of GL2(Qp) [J].
Berger, Laurent .
COMPOSITIO MATHEMATICA, 2010, 146 (01) :58-80
[4]  
Bloch S., 1990, Progr. Math., VI, P333
[5]  
Bockle G., 2013, PREPRINT
[6]  
Böckle G, 2010, ASTERISQUE, P529
[7]  
BRUNS W, 1988, LECT NOTES MATH, V1327, P1
[8]  
Bruns W, 1993, COHEN MACAULAY RINGS
[9]  
Cartier P., 1990, Progr. Math., V87, P249
[10]  
Chenevier G, 2013, MATH ANN, V355, P1469, DOI 10.1007/s00208-012-0815-z