Exact scaling solution of the mode coupling equations for non-linear fluctuating hydrodynamics in one dimension

被引:20
作者
Popkov, V. [1 ]
Schadschneider, A. [2 ]
Schmidt, J. [2 ]
Schuetz, G. M. [3 ]
机构
[1] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, Nussallee 14-16, D-53119 Bonn, Germany
[2] Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany
[3] Forschungszentrum Julich, Inst Complex Syst 2, Theoret Soft Matter & Biophys, D-52425 Julich, Germany
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2016年
关键词
correlation functions; exact results; fluctuating hydrodynamics; transport properties; CONSERVATION-LAWS; SYSTEMS; DIFFUSION; GROWTH;
D O I
10.1088/1742-5468/2016/09/093211
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We obtain the exact solution of the one-loop mode-coupling equations for the dynamical structure function in the framework of non-linear fluctuating hydrodynamics in one space dimension for the strictly hyperbolic case where all characteristic velocities are different. All solutions are characterized by dynamical exponents which are Kepler ratios of consecutive Fibonacci numbers, which includes the golden mean as a limiting case. The scaling form of all higher Fibonacci modes are asymmetric Levy-distributions. Thus a hierarchy of new dynamical universality classes is established. We also compute the precise numerical value of the Prahofer-Spohn scaling constant to which scaling functions obtained from mode coupling theory are sensitive.
引用
收藏
页数:20
相关论文
共 29 条
  • [1] Anomalous Fluctuations for a Perturbed Hamiltonian System with Exponential Interactions
    Bernardin, Cedric
    Goncalves, Patricia
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 325 (01) : 291 - 332
  • [2] Large compact clusters and fast dynamics in coupled nonequilibrium systems
    Chakraborty, Shauri
    Pal, Sukla
    Chatterjee, Sakuntala
    Barma, Mustansir
    [J]. PHYSICAL REVIEW E, 2016, 93 (05)
  • [3] Numerical solution of the mode-coupling equations for the Kardar-Parisi-Zhang equation in one dimension
    Colaiori, F
    Moore, MA
    [J]. PHYSICAL REVIEW E, 2002, 65 (01): : 1 - 017105
  • [4] Weak and strong dynamic scaling in a one-dimensional driven coupled-field model: Effects of kinematic waves
    Das, D.
    Basu, A.
    Barma, M.
    Ramaswamy, S.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (2 I): : 214021 - 214021
  • [5] Numerical test of hydrodynamic fluctuation theory in the Fermi-Pasta-Ulam chain
    Das, Suman G.
    Dhar, Abhishek
    Saito, Keiji
    Mendl, Christian B.
    Spohn, Herbert
    [J]. PHYSICAL REVIEW E, 2014, 90 (01):
  • [6] Energy diffusion in hard-point systems
    Delfini, L.
    Denisov, S.
    Lepri, S.
    Livi, R.
    Mohanty, P. K.
    Politi, A.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2007, 146 : 21 - 35
  • [7] UNIVERSALITY CLASS OF INTERFACE GROWTH WITH REFLECTION SYMMETRY
    DEVILLARD, P
    SPOHN, H
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (3-4) : 1089 - 1099
  • [8] Coupled Kardar-Parisi-Zhang Equations in One Dimension
    Ferrari, Patrik L.
    Sasamoto, Tomohiro
    Spohn, Herbert
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2013, 153 (03) : 377 - 399
  • [9] Mode-coupling and renormalization group results for the noisy Burgers equation
    Frey, E
    Tauber, UC
    Hwa, T
    [J]. PHYSICAL REVIEW E, 1996, 53 (05): : 4424 - 4438
  • [10] Current Symmetries for Particle Systems with Several Conservation Laws
    Grisi, Rafael M.
    Schuetz, Gunter M.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (06) : 1499 - 1512