A sequential quadratic programming algorithm with an additional equality constrained phase

被引:29
作者
Luis Morales, Jose [2 ]
Nocedal, Jorge [1 ]
Wu, Yuchen [1 ]
机构
[1] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
[2] Inst Tecnol Autonomo Mexico, Dept Matemat, Mexico City 01080, DF, Mexico
基金
美国国家科学基金会;
关键词
constrained optimization; nonlinear programming; sequential quadratic programming; NONLINEAR OPTIMIZATION; GLOBAL CONVERGENCE; LINE SEARCH;
D O I
10.1093/imanum/drq037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A sequential quadratic programming (SQP) method is presented that aims to overcome some of the drawbacks of contemporary SQP methods. It avoids the difficulties associated with indefinite quadratic programming subproblems by defining this subproblem to be always convex. The novel feature of the approach is the addition of an equality constrained quadratic programming (EQP) phase that promotes fast convergence and improves performance in the presence of ill conditioning. This EQP phase uses exact second-order information and can be implemented using either a direct solve or an iterative method. The paper studies the global and local convergence properties of the new algorithm and presents a set of numerical experiments to illustrate its practical performance.
引用
收藏
页码:553 / 579
页数:27
相关论文
共 39 条
[1]  
[Anonymous], 1995, ACTA NUMER, DOI [DOI 10.1017/S0962492900002518, 10.1017/s0962492900002518]
[2]  
[Anonymous], 1987, Unconstrained Optimization: Practical Methods of Optimization
[3]   SEQUENTIAL QUADRATIC-PROGRAMMING WITH PENALIZATION OF THE DISPLACEMENT [J].
BONNANS, JF ;
LAUNAY, G .
SIAM JOURNAL ON OPTIMIZATION, 1995, 5 (04) :792-812
[4]   A ROBUST SEQUENTIAL QUADRATIC-PROGRAMMING METHOD [J].
BURKE, JV ;
HAN, SP .
MATHEMATICAL PROGRAMMING, 1989, 43 (03) :277-303
[5]  
Byrd R.H., 2009, A line search exact penalty method using steering rules
[6]  
Byrd RH, 2006, NONCONVEX OPTIM, V83, P35
[7]   On the convergence of successive linear-quadratic programming algorithms [J].
Byrd, RH ;
Gould, NIM ;
Nocedal, J ;
Waltz, RA .
SIAM JOURNAL ON OPTIMIZATION, 2005, 16 (02) :471-489
[8]   An algorithm for nonlinear optimization using linear programming and equality constrained subproblems [J].
Byrd, RH ;
Gould, NIM ;
Nocedal, J ;
Waltz, RA .
MATHEMATICAL PROGRAMMING, 2004, 100 (01) :27-48
[9]   Steering exact penalty methods for nonlinear programming [J].
Byrd, Richard H. ;
Nocedal, Jorge ;
Waltz, Richard A. .
OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (02) :197-213
[10]  
CHAMBERLAIN RM, 1982, MATH PROGRAM STUD, V16, P1