Retrieving K-Band Instantaneous Microwave Land Surface Emissivity Based on Passive Microwave Brightness Temperature and Atmospheric Precipitable Water Vapor Data

被引:7
作者
Zhou, Fang-Cheng [1 ,2 ]
Li, Zhao-Liang [3 ]
Wu, Hua [1 ,2 ,4 ]
Tang, Bo-Hui [1 ,2 ]
Tang, Ronglin [1 ,2 ]
Song, Xiaoning [2 ]
Yan, Guangjian [5 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Agr Sci, Minist Agr, Key Lab Agriinformat, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China
[4] Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Jiangsu, Peoples R China
[5] Beijing Normal Univ, Sch Geog, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Brightness temperature; land surface emissivity; precipitable water vapor (PWV); SATELLITE DATA ASSIMILATION; SOIL-MOISTURE; AMSR-E; RADIOMETRIC OBSERVATIONS; PRINCIPAL COMPONENTS; RADIATIVE-TRANSFER; SEA-ICE; PART I; WEATHER; SSM/I;
D O I
10.1109/JSTARS.2017.2763167
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An algorithm has been developed for retrieving instantaneous K-band microwave land surface emissivity using only brightness temperature and atmospheric precipitable water vapor content (PWV) data. The radiative transfer model is simplified to a new microwave emissivity retrieval model using two assumptions: 1) emissivities at 18.7 and 23.8 GHz with horizontal polarization are approximately equal, and 2) simple parameterizations exist between atmospheric transmittance and PWV and between atmospheric effective radiating temperature and PWV. The new technique does not need infrared land surface temperature as the input data, and it overcomes the limitation of previous algorithms under cloudy conditions. The estimated instantaneous emissivities are validated at single points and in the regional area. The results demonstrate that this simplified algorithm has the best root mean square error of 0.017, a bias of 0.004 in the single-point validation, and an R-2 of 0.66 and a RMSE of 0.021 in the regional validation. This simplified algorithm has the potential to obtain instantaneous microwave land surface emissivity under both cloud-free and cloudy conditions.
引用
收藏
页码:5608 / 5617
页数:10
相关论文
共 55 条
  • [1] INTERACTION OF ELECTROMAGNETIC-WAVES AT ROUGH DIELECTRIC SURFACES
    AGARWAL, GS
    [J]. PHYSICAL REVIEW B, 1977, 15 (04): : 2371 - 2383
  • [2] GPS METEOROLOGY - REMOTE-SENSING OF ATMOSPHERIC WATER-VAPOR USING THE GLOBAL POSITIONING SYSTEM
    BEVIS, M
    BUSINGER, S
    HERRING, TA
    ROCKEN, C
    ANTHES, RA
    WARE, RH
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1992, 97 (D14) : 15787 - 15801
  • [3] Intercomparison of Humidity and Temperature Sensors: GTS1, Vaisala RS80, and CFH
    Bian Jianchun
    Chen Hongbin
    Voemel, Holger
    Duan Yunjun
    Xuan Yuejian
    Lue Daren
    [J]. ADVANCES IN ATMOSPHERIC SCIENCES, 2011, 28 (01) : 139 - 146
  • [4] MiRS: An All-Weather 1DVAR Satellite Data Assimilation and Retrieval System
    Boukabara, Sid-Ahmed
    Garrett, Kevin
    Chen, Wanchun
    Iturbide-Sanchez, Flavio
    Grassotti, Christopher
    Kongoli, Cezar
    Chen, Ruiyue
    Liu, Quanhua
    Yan, Banghua
    Weng, Fuzhong
    Ferraro, Ralph
    Kleespies, Thomas J.
    Meng, Huan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (09): : 3249 - 3272
  • [5] Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data
    Brocca, Luca
    Ciabatta, Luca
    Massari, Christian
    Moramarco, Tommaso
    Hahn, Sebastian
    Hasenauer, Stefan
    Kidd, Richard
    Dorigo, Wouter
    Wagner, Wolfgang
    Levizzani, Vincenzo
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (09) : 5128 - 5141
  • [6] The Atmospheric radiation measurement (ARM) program network of microwave radiometers: instrumentation, data, and retrievals
    Cadeddu, M. P.
    Liljegren, J. C.
    Turner, D. D.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (09) : 2359 - 2372
  • [7] Intersensor Calibration Between F13 SSMI and F17 SSMIS for Global Sea Ice Data Records
    Cavalieri, Donald J.
    Parkinson, Claire L.
    DiGirolamo, Nicolo
    Ivanoff, Alvaro
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (02) : 233 - 236
  • [8] CHEDIN A, 1985, J CLIM APPL METEOROL, V24, P128, DOI 10.1175/1520-0450(1985)024<0128:TIIIMA>2.0.CO
  • [9] 2
  • [10] Chevallier F, 1998, J APPL METEOROL, V37, P1385, DOI 10.1175/1520-0450(1998)037<1385:ANNAFA>2.0.CO